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1. Quadratic functionals of Brownian motion (Bm)

Let {W (t)} be standard Brownian motion (Bm) defined on [0, 1] and consider a
quadratic functional of Bm given by

S =

∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t), (1)

whereK(s, t) is a symmetric, continuous, and nearly definite kernel defined on [0, 1]×[0, 1]
with the definition of ‘nearly definite kernel’ given later.

The statistic S comes from

Theorem 1: Nabeya and Tanaka (1988). As N → ∞, it holds that

SN =
1

N

N∑
j=1

N∑
k=1

BN(j, k) εj εk =
1

N
ε′BNε ⇒ S, (2)

where ε = (ε1, , . . . , εN)
′ and {εj} ∼ i.i.d.(0, 1), whereas BN is an N × N symmetric

matrix whose (j, k)th element BN(j, k) satisfies

lim
N→∞

max
1≤j,k≤N

∣∣∣∣BN(j, k)−K

(
j

N
,
k

N

)∣∣∣∣ = 0. (3)

It can be seen from (3) that elements of BN must be close to each other, which excludes
sparse matrices like diagonal matrices. It is also clear that

S =

∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t)
D
=

∫ 1

0

∫ 1

0

K(1− s, 1− t) dW (s) dW (t),

where
D
= stands for distributional equivalence.

2. Fredholm determinant (FD)

Given a symmetric and continuous function K(s, t), consider the following equation
for λ and f(t):

f(t) = λ

∫ 1

0

K(s, t)f(s) ds. (4)

A value λ for which this integral equation possesses a nonvanishing continuous solution
f(t) is called an eigenvalue of K(s, t); the corresponding solution f(t) is called an eigen-
function for the eigenvalue λ. It is known that there exists at least one eigenvalue insofar
as K(s, t) is not identically equal to zero. Note also that every eigenvalue is real, whereas
λ = 0 is certainly not an eigenvalue. The maximum number of linearly independent
eigenfunctions corresponding to the eigenvalue λ is called the multiplicity of λ.
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To define the FD of K(s, t) we approximate the integral equation (4) by the algebraic
system

f

(
k

N

)
=

λ

N

N∑
j=1

K

(
j

N
,
k

N

)
f

(
j

N

)
(k = 1, . . . , N),

or, in matrix notation,

fN =
λ

N
KNfN ⇔

(
IN − λ

N
KN

)
fN = 0, (5)

where fN = [(f(k/N))] is an N × 1 vector and KN = [(K(j/N, k/N))] is an N × N
symmetric matrix. To obtain λ that satisfies (5), we consider

DN(λ) =

∣∣∣∣IN − λ

N
KN

∣∣∣∣ . (6)

DN(λ) is a polynomial of degree N in λ and its zeros give the reciprocals of the eigenvalues
of KN/N in matrix theory. The definition of DN(λ) in (6) gives a normalization DN(0) =
1, which is independent of the matrix KN . Then the FD of K(s, t) is defined [Hochstadt
(1973)] by

D(λ) = lim
N→∞

DN(λ) = lim
N→∞

∣∣∣∣IN − λ

N
KN

∣∣∣∣ (7)

= 1 +
∞∑
n=1

(−1)ndn
n!

λn, (8)

where

dn =

∫ 1

0

· · ·
∫ 1

0

K

(
t1 · · · tn
t1 · · · tn

)
dt1 · · · dtn,

K

(
t1 · · · tn
t1 · · · tn

)
=

∣∣∣∣∣∣∣
K(t1, t1) K(t1, t2) · · · K(t1, tn)

...
...

...
K(tn, t1) K(tn, t2) · · · K(tn, tn)

∣∣∣∣∣∣∣ .

Note here that

d1 =

∫ 1

0

K(s, s) ds, (9)

d2 =

∫ 1

0

∫ 1

0

∣∣∣∣ K(s, s) K(s, t)
K(s, t) K(t, t)

∣∣∣∣ ds dt
= d21 −

∫ 1

0

∫ 1

0

K2(s, t) ds dt. (10)

The series in (8) converges for all λ [Hochstadt (1973)], that is, D(λ) is an entire
function of λ with D(0) = 1. Then D(λ) has an infinite product expansion [Hochstadt
(1973, p.249)] expressed as

D(λ) = exp

{
−λ
∫ 1

0

K(t, t) dt

} ∞∏
n=1

{(
1− λ

λn

)
exp

(
λ

λn

)}
, (11)
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where λ1, λ2, . . . are eigenvalues of K(s, t) repeated as many times as their multiplicities.
A much simpler product expansion for D(λ) will be obtained shortly by imposing a
condition on K(s, t) in addition to symmetry and continuity.

It is recognized in (11) that the zeros of D(λ) are eigenvalues of K(s, t). In fact, we
have [Hochstadt (1973, p.243)]

Theorem 2. Suppose that K(s, t) is symmetric and continuous on [0, 1]× [0, 1]. Then
every zero of D(λ) is an eigenvalue of K(s, t), and in turn every eigenvalue of K(s, t) is a
zero of D(λ).

It follows from Theorem 2 that D(λ) has necessary and sufficient information about
eigenvalues of the kernel K(s, t). If K(s, t) has an infinite number of eigenvalues, K(s, t)
is said to be nondegenerate; otherwise it is degenerate. If all of the eigenvalues are positive
(negative), then K(s, t) is said to be positive (negative) definite. This is equivalent to∫ 1

0

∫ 1

0

K(s, t) g(s) g(t) ds dt ≥ 0 (≤ 0) (12)

for any continuous function g(t) defined on [0, 1]. The kernel K(s, t) is said to be nearly
definite if all but a finite number of eigenvalues have the same sign. Any degenerate kernel
is always nearly definite; so is the sum of a definite kernel and degenerate kernels.

The following theorem called Mercer’s theorem is quite useful, not only for obtaining
a simpler expression for D(λ) in (11), but also for deriving distributions dealt with in sub-
sequent discussions. For the proof, see Courant and Hilbert (1953, p.138) and Hochstadt
(1973, p.91).

Theorem 3: Mercer’s theorem. Let K(s, t) be symmetric, continuous, and nearly
definite in [0, 1]× [0, 1]. Then K(s, t) has the series expansion given by

K(s, t) =
∞∑
n=1

fn(s)fn(t)

λn
, (13)

where {λn} is a sequence of eigenvalues of K(s, t) repeated as many times as their multi-
plicities, whereas {fn(t)} is an orthonormal sequence of eigenfunctions corresponding to
λn and the series on the right side converges absolutely and uniformly to K(s, t).

It is noticed from (13) that K(s, t) and K(1−s, 1−t) have the same set of eigenvalues,
which implies that the two kernels have the same FD because of Theorem 4 described
below. This can also be verified from (8) by checking the definition of dn. It follows from
Mercer’s theorem that, if K(s, t) is symmetric, continuous, and nearly definite,∫ 1

0

K(t, t) dt =
∞∑
n=1

1

λn
, (14)

where each eigenvalue is repeated as many times as its multiplicity and the sum converges
absolutely. Thus we have, from (11),

D(λ) = exp

{
−λ
∫ 1

0

K(t, t) dt+
∞∑
n=1

λ

λn

}
∞∏
n=1

(
1− λ

λn

)
=

∞∏
n=1

(
1− λ

λn

)
. (15)
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3. The characteristic function (c.f.) of the statistic S

We can now prove the Anderson-Darling theorem given by

Theorem 4: Anderson and Darling (1952). Consider the statistic

S =

∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t)
D
=

∫ 1

0

∫ 1

0

K(1− s, 1− t) dW (s) dW (t), (16)

where K(s, t) is symmetric, continuous, and nearly definite. Then the c.f. of S is given
by

E
(
eiθS
)

= E

[
exp

{
iθ

∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t)

}]
=

(
D(2iθ)

)−1/2
(17)

=
∞∏
n=1

(
1− 2iθ

λn

)−1/2

, (18)

where D(λ) is the FD of K(s, t), whereas {λn} is a sequence of eigenvalues of K(s, t)
repeated as many times as their multiplicities.

Proof. We have, from Mercer’s theorem,

S =

∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t) =

∫ 1

0

∫ 1

0

∞∑
n=1

fn(s)fn(t)

λn
dW (s) dW (t)

=
∞∑
n=1

1

λn

(∫ 1

0

fn(t) dW (t)

)2
D
=

∞∑
n=1

1

λn
Z2

n, {Zn} ∼ NID(0, 1).

Then we can compute the c.f. of S by using this last expression and (15) to obtain (17)
and (18), which establishes the theorem.

Once the FD associated with the statistic S in (16) is derived, the computation of
moments of S becomes easier, although there are various ways.

Theorem 5. For the statistic S in (16), its kth moment is given by

E
(
Sk
)

= E

( ∞∑
n=1

1

λn
Z2

n

)k


= E

[(∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t)

)k
]

=
dk (D(2iθ))−1/2

ik dθk

∣∣∣∣∣
θ=0

.
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In particular, we have

E(S) =
∞∑
n=1

1

λn
=

∫ 1

0

K(t, t) dt = d1, (19)

E(S2) = 3d21 − 2d2, (20)

Var(S) = 2
∞∑
n=1

1

λ2n
= 2

∫ 1

0

∫ 1

0

K2(s, t) ds dt (21)

= 2
(
d21 − d2

)
, (22)

E(S3) = 15d31 − 18d1d2 + 4d3,

E(S4) = 105d41 − 180d21d2 + 48d1d3 + 36d22 − 8d4,

where dn (n = 1, 2, 3, 4) are coefficients in the series expansion for D(λ) given in (8) with
d1 and d2 defined in (9) and (10), respectively.

Proof. Since it follows from Theorem 4 that

S =

∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t)
D
=

∞∑
n=1

1

λn
Z2

n,

the first and second equalities hold. The third equality comes from the property of the c.f.(
D(2iθ))−1/2. The first and second equalities in (19) are obvious and the third equality
comes from

E(S) =
d (D(2θ))−1/2

dθ

∣∣∣∣∣
θ=0

=
d

dθ

(
1 +

∞∑
n=1

(−1)n(2θ)n

n!
dn

)−1/2
∣∣∣∣∣∣
θ=0

=
d

dθ

(
1− 2θd1 +

4θ2

2
d2 −

8θ3

6
d3 + · · ·

)−1/2
∣∣∣∣∣
θ=0

= d1.

We obtain (20) by computing d2 (D(2θ))−1/2 /dθ2|θ=0. The relation in (22) is obtained
from (19) and (20). The first relation in (21) is obvious, whereas the second relation
comes from (10) and (22). Similarly we can obtain the expressions for E(S3) and E(S4)

by computing dk (D(2θ))−1/2 /dθk|θ=0 for k = 3, 4, which establishes the theorem.

4. A general procedure for deriving the FD

We have defined the FD D(λ) in various ways [see (7), (8), and (15)]. It, however, is
recognized that the computation of D(λ) via these formulas is burdensome or impossible
in general.

We present here a general method for obtaining the FD, which is to deal with a
differential equation with some conditions equivalent to the original integral equation.
We deal with two cases. One is the case where the integral equation is equivalent to the
pth order homogeneous differential equation with p boundary conditions. The other is
the case where the differential equation is a second order nonhomogeneous equation with
two boundary conditions and some other extra restrictions.

Case 1: Suppose first that the differential equation is the pth order homogeneous equa-
tion that has a general solution given by

f(t) = c1ϕ1(t) + · · ·+ cpϕp(t), (23)
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where c1, . . . , cp are arbitrary constants and ϕ1(t), . . . , ϕp(t) are linearly independent
continuous functions, whereas the boundary conditions are given by

M(λ)c = 0, M(λ) : p× p, c = (c1, c2, . . . , cp)
′. (24)

Then we have the following theorem leading to the derivation of the FD.

Theorem 6: Kac, Kiefer, and Wolfowitz (1955), Nabeya and Tanaka (1988,
1990a). Suppose that the integral equation (4) is equivalent to the general solution (23)
of a differential equation with the p boundary conditions M(λ) c = 0, where M(λ) and c
are defined in (24). Then |M(λ)| = 0 is a necessary and sufficient condition for λ (̸= 0)
to be an eigenvalue of K(s, t) and the multiplicity ℓn of the eigenvalue λn is given by

ℓn = p− rank (M(λn)) . (25)

Note that the multiplicity is simply the dimension of a null space of M(λ). The
following theorem gives a set of sufficient conditions for a function of λ to be the FD.

Theorem 7: Nabeya and Tanaka (1988, 1990a). Let K(s, t) be symmetric, con-
tinuous, and nearly definite in [0, 1] × [0, 1] and {λn} be a sequence of eigenvalues of K.
Suppose that D̃(λ) is an entire function of λ with D̃(0) = 1. Then D̃(λ) becomes the FD
of K if

(i) every zero of D̃(λ) is an eigenvalue of K, and in turn every eigenvalue of K is a zero
of D̃(λ);

(ii) D̃(λ) can be expanded as

D̃(λ) =
∞∏
n=1

(
1− λ

λn

)ℓn

, (26)

where ℓn is the multiplicity of λn.

Case 2: Here we deal with the case where the integral equation (4) is equivalent to
a second order nonhomogeneous differential equation with two boundary conditions and
some other extra restrictions. For this purpose we consider the integral equation with the
kernel defined by

K(s, t) = K0(s, t) +G(s, t) +

q∑
k=1

ξk(s)ηk(t), (27)

where K0(s, t) = 1 − max(s, t) or min(s, t) − st, whereas G(s, t), ξk(s) and ηk(t) (k =
1, . . . , q) are deterministic functions that satisfy

i) ∂2G(s, t)/∂t2 = 0, whereas ξk(s) and ηk(t) (k = 1, . . . , q) are continuous and each
set is linearly independent in the space C[0, 1].

ii) η′′k(t) (k = 1, . . . , q) are linearly independent.

Then we are led to the second order nonhomogeneous differential equation of the form

f ′′(t) + λf(t) = λ

q∑
k=1

akη
′′
k(t), (28)
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where

ak =

∫ 1

0

ξk(s)f(s) ds (k = 1, . . . , q), (29)

and we have two appropriate boundary conditions.
The general solution to (28) is

f(t) = c1 cos
√
λ t+ c2 sin

√
λ t+

q∑
k=1

akgk(t), (30)

where gk(t) is a special solution of

g′′k(t) + λgk(t) = λη′′k(t). (31)

The q equations in (29) and two boundary conditions yield a system of q + 2 linear
homogeneous equationsM(λ) c = 0 in c = (a1, . . . , aq, c1, c2)

′. Then we compute |M(λ)|
to obtain a candidate for the FD, determining the multiplicity ℓn of each eigenvalue λn by
ℓn = q+2− rank(M(λn)) from Theorem 6. Following Theorem 7 we can find a candidate
for the FD to ensure that it really is the FD.

There are various kernels that can be handled by the above methodologies. These
include goodness of fit test statistics [Watson (1961)], test statistics for parameter con-
stancy [MacNeill (1974), Nabeya and Tanaka (1988)], AR unit root test statistics [Nabeya
and Tanaka (1990a, 1990b), Tanaka (2017)], MA unit root test statistics [Tanaka (1990)],
multiple unit root statistics [Tanaka (1999)], fractional unit root statistics [Tanaka (2017)]
and so on.

5. Darling’s Formula and its extensions

The general procedure discussed in the last section enables us to obtain the FD for a
broad class of kernels, but there are some kernels to which the above methodologies are
complicated to apply. Here we suggest simple and efficient methods for computing the
FDs of kernels that satisfy some restrictions. We start with the following theorem.

Theorem 8: Darling (1955), Sukhatme (1973). Consider

K(s, t) = K0(s, t)−
m∑
j=1

ψj(s)ψj(t), (32)

where K0(s, t) is a symmetric, continuous, and positive definite kernel whose FD is
D0(λ), and ψj(t) (j = 1, . . . , m) are continuous and linearly independent functions. Let
λ1, λ2, . . . be the eigenvalues of K0(s, t), where the multiplicity of each eigenvalue is unity,
and let f1(t), f2(t), . . . be the corresponding orthonormal eigenfunctions. Then the FD of
K(s, t) is given by

D(λ) = D0(λ) |P (λ)|, (33)

where P (λ) is the m×m symmetric matrix whose (j, k)th elements are

Pjj(λ) = 1 + λ
∞∑
n=1

b2jn
1− λ/λn

, Pjk(λ) = λ
∞∑
n=1

bjnbkn
1− λ/λn

(j ̸= k),

bjn =

∫ 1

0

ψj(t)fn(t) dt.
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The expression for D(λ) in (33) is simple, but its computation deals with the infinite
sumes contained in Pjk(λ). To compute the infinite sums easily, we become more specific
about K0(s, t) and ψ(t). Then we have

Theorem 9: Tanaka (2024). Consider the kernel defined by

K(s, t) = min(s, t)− st−
m∑
j=1

ψj(s)ψj(t), ψj(0) = ψj(1) = 0, (34)

where ψj(t) (j = 1, . . . , m) are continuously differentiable. Then its FD is given by

D(λ) =
sin

√
λ√

λ
|P (λ)|, (35)

where the (j, k)th elements Pjk(λ) of the m×m symmetric matrix P (λ) are

Pjj(λ) = 1− 2
√
λ

sin
√
λ

∫ 1

0

(∫ t

0

ψ′
j(s) cos

√
λs ds

)
ψ′
j(t) cos

√
λ(1− t) dt,

Pjk(λ) = −
√
λ

sin
√
λ

∫ 1

0

∫ 1

0

ψ′
j(s)ψ

′
k(t)L1(s, t) ds dt (j ̸= k),

L1(s, t) =


cos

√
λs cos

√
λ(1− t) (s ≤ t),

cos
√
λt cos

√
λ(1− s) (s ≥ t).

Specifying the kernel K0(s, t) in (32) as 1 −max(s, t), we can establish the following
theorem.

Theorem 10: Tanaka (2024). Consider the kernel defined by

K(s, t) = 1−max(s, t)−
m∑
j=1

ψj(s)ψj(t), ψj(1) = 0, (36)

where ψj(t) (j = 1, . . . , m) are continuously differentiable. Then its FD is given by

D(λ) = cos
√
λ |P (λ)|, (37)

where the (j, k)th elements Pjk(λ) of the m×m symmetric matrix P (λ) are

Pjj(λ) = 1 +
2
√
λ

cos
√
λ

∫ 1

0

(∫ t

0

ψ′
j(s) sin

√
λs ds

)
ψ′
j(t) cos

√
λ(1− t) dt,

Pjk(λ) =

√
λ

cos
√
λ

∫ 1

0

∫ 1

0

ψ′
j(s)ψ

′
k(t)L2(s, t) ds dt (j ̸= k),

L2(s, t) =


sin

√
λs cos

√
λ(1− t) (s ≤ t),

sin
√
λt cos

√
λ(1− s) (s ≥ t).

8



6. Concluding remarks

Here we have concentrated on purely quadratic functionals of Bm:

S =

∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t),

and discussed how to compute the c.f. of S by deriving the FD of K(s, t).
Similarly we can deal with a ratio statistic :

R =

∫ 1

0

∫ 1

0

KN(s, t) dW (s) dW (t)∫ 1

0

∫ 1

0

KD(s, t) dW (s) dW (t)

,

where KD(s, t) is positive definite and KN(s, t) is degenerate. Then we consider

P (R ≤ x) = P

(∫ 1

0

∫ 1

0

[
xKD(s, t)−KN(s, t)

]
dW (s) dW (t) ≥ 0

)
= P

(∫ 1

0

∫ 1

0

K(s, t; x) dW (s) dW (t) ≥ 0

)
,

and the distribution function of R can be computed from the FD of K(s, t; x) and Imhof’s
formula.

It is also sometimes the case that we have to deal with quadratic functionals of Bm
added with linear or bilinear functionals. For example, we have

S1 =

∫ 1

0

(
X(t) +m(t)

)2
dt,

S2 =

∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t) +

∫ 1

0

m(t) dW (t),

S3 =

∫ 1

0

(
X(t) + Zm(t)

)2
dt,

S4 =

∫ 1

0

∫ 1

0

K(s, t) dW (s) dW (t) + Z

∫ 1

0

m(t) dW (t),

where X(t) is a zero-mean Gaussian process, whereas m(t) is an ordinary continuous
function and Z ∼ N(0, 1) that is independent of W (t).

We also consider the distribution of

SH =

∫ 1

0

B2
H(t) dt

D
=

∫ 1

0

∫ 1

0

1

2

[
s2H + t2H − |s− t|2H

]
dW (s) dW (t),

where {BH(t)} is fractional Brownian motion (fBm) defined on [0, 1], and H is the Hurst

index (0 < H < 1). The FD ofKH(s, t) =
1

2

[
s2H + t2H − |s− t|2H

]
remains to be derived,

for which Tanaka (2014) gives an approximation.
Tanaka (2024) discusses in detail the above problems together with various statistical

examples.
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