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1. Interstellar Medium (ISM)
1.1 Phase in ISM
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Myers (1978)

ISM has various phases

1. Plasma (ionized diffuse phase)
2. Neutral gas (mainly neutral hydrogen HI)
3. Molecular gas (mainly molecular hydrogen H2)

Since gas must become dense enough to form stars,
star formation occurs in molecular clouds. Namely,

Atomic gas ⇒ Molecular gas ⇒ Stars

1.2 ISM phases and star formation 

Spatial scales of galaxies and star formation (SF) are some
orders of magnitude different:

Galaxies ~ kpc
Star formation ~ a few pc (for molecular clouds)

Spatial scales 

Spatial scales of galaxies and star formation (SF) are some
orders of magnitude different:

Galaxies ~ kpc
Star formation ~ a few pc (for molecular clouds)

Spatial scales 

However, global properties of galaxies and SF activity are
mysteriously correlated in various aspects!
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Spatial scales of galaxies and star formation (SF) are some
orders of magnitude different:

Galaxies ~ kpc
Star formation ~ a few pc (for molecular clouds)

Spatial scales 

However, global properties of galaxies and SF activity are
mysteriously correlated in various aspects!

⇒ Meso-scale physics to connect the scales of a galaxy and SF
should be explored.

Hydrogen is overwhelmingly dominant among others.
⇒ Molecular clouds consist of hydrogen molecules (H2).

Molecules are not only formed but also dissociated and turn
back into atoms by an ultraviolet (UV) radiation.

The layer on which the formation and dissociation of H2

balance forms the surface boundary of a molecular cloud.

⇒ Since UV is shielded by H2, the center of a molecular cloud
can become cooler and cooler, finally to form a very dense
molecular core, where stars form.

Star formation in the ISM

Kennicutt-Schmidt (K-S) law

Stars form in molecular cores. 

⇒ It is natural to suppose a relation between the star formation 
rate (SFR) and gas density. Schmidt (1959) proposed a relation

SFR ∝ 𝝆𝒏. 

i. n = 1 Density controls star formation.
ii. n = 2 Collision-like process plays a role for star formation

⇒ The power-law index contains substantial information on
what triggers the star formation.

It is crucial to reveal spatially resolved SF law in galaxies!

Sample size: n
Data dimension: d

The following condition is implicitly assumed

n >> d

But this is not the case for many cases in scientific
researches. Astronomers and astrophysicists have
ever simply given up when they face such type of
problem.

Classical statistical analysis

2.1 General situation in astrophysics

2. High-Dimensional Statistical Analysis

Sample size: n
Data dimension: d

For the HDLSS data, the condition is

n << d

This condition is often found in e.g., genomic analysis,
medical analysis, etc.

In astrophysics, for example, 2-dim spectral map
such as integral field spectroscopy has this property.

High-dimensional low-sample size (HDLSS) data analysis

2. High-Dimensional Statistical Analysis
2.1 General situation in astrophysics

For high-dimensional data, classical limit theorems do not
work. If we wrongly assume them, we would be lead to a
wrong conclusion.

Simplest example: for the sample mean

1. as d /n→ 0

2. as d /n→ ∞

This striking property is referred to as the strong
inconsistency.

2.2 Unusual behavior of high-dimensional data
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When we draw a set of n samples from the parent
population (d > n), .

The sample covariance matrix (d×d) is

Note that this is a tremendously huge matrix!

2.2 Geometric Representation
Dual representation of sample covariance matrix

When we draw a set of n samples from the parent
population (d > n), .

Consider a dual sample covariance matrix (n×n),

This can be handled much more easily!

2.2 Geometric Representation
Dual representation of sample covariance matrix

× =n
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When we draw a set of n samples from the parent
population (d > n), .

and

share the first n eigenvalues, i.e., the same important
statistical information!

n

n

d

d

Eigenvalues of the dual covariance matrix

We can visualize the behavior of high-dimensional data
vectors with dual representation. We omit all the
mathematical details and jump onto the result.

1. The population has a similar property with Gaussian
⇒ The data converge on a sphere!!

d = 2 d = 20 d = 200 d = 2000

Yata & Aoshima (2012)

Unusual behavior of high-dimensional data: details

We can visualize the behavior of high-dimensional data
vectors with dual representation. We omit all the
mathematical details and jump onto the result.

d = 2 d = 20 d = 200 d = 2000

Yata & Aoshima (2012)

2. The population has a similar property with non-Gaussian
⇒ The data converge on the axes!!

Unusual behavior of high-dimensional data

Feature space 
Noise space 

Extracted feature (PCs)
Feature space  embedded in a noise space

A specially designed PCA, the high-dimensional PCA, can
sweep out the noise sphere and extract features of the data.

High-dimensional PCA

Aoshima (2012)
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2.3 Actual data: ALMA data cube of NGC253

Starburst nucleus
(~ 1kpc)

Disk (out to > 20 kpc)

2MASS (JHK) Jarrett et al. (2003)

NGC 253: prototypal starburst

ALMA resolved diverse star-forming activities at ~ 10 pc
scale.

ALMA Band7 spectra

Rich in molecular lines

Ando et al. (2017)

Rich in molecular lines

Ando et al. (2017)

2.4 Structure of the Data

~ spatial dimension 231× spectral dimension 2248

⇒ A case with n = 231 and d = 2248 (n << d)

Problems from astrophysical side

• Too much information on spectra.

• Too large variety of spectral lines compared to n.

We apply the high-dimensional statistical analysis to the
ALMA spectral mapping data of NGC253.

Data: Ando et al. (2017)

3. Analysis of Starburst Region in NGC253
3.1 Analysis of Raw Data 

Index of eigenvalues
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Eigenvalues of the PCA (contribution)

3. Analysis of Starburst Region in NGC253
3.1 Analysis of Raw Data 
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The huge amount of information on the
ALMA spectra are basically determined
by two largest eigenvalues.

Eigenvalues of the PCA (contribution)
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Ratio of eigenvalues obtained by traditional and high-
dimensional PCAs (raw data)

PC2

PC1

PC1 and 2 consist of ~ 20 elements (spectral features on
the resolution units). The key features may be reduced
only to a few to several lines!

Result: automatic sparse PCA (A-SPCA)

Eigenspectra for PC1-5

Responsible spectral features for PC1, PC2 and PC3 

Now PC1 more clearly represents the total intensity, and
PC2 and 3 represent smaller-scale velocity structures.
The responsible features are extracted by the A-SPCA
(Yata & Aoshima 2024).

Spectral features corresponding to PC1 and PC2

https://en.wikipedia.org/wiki/Hydrogen_cyanide

HCN (hydrogen cyanide, as known as the hydrocyanic acid)
and HNC (hydrogen isocyanide) are linear molecules, which
have a quantum mechanical transition corresponding to the
rotation states.

https://en.wikipedia.org/wiki/Hydrogen_isocyanide

Spatial map of PC1
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Spatial map of PC1 and PC2 
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HCN(4-3)

Velocity field of the systemic rotation

⇒ Doppler shift correction to remove the systemic rotation.

Systemic rotation and Doppler shift



Restframe

Systemic rotation and Doppler shift

If the system is rotating as a whole, the observed wavelength
is affected by the Doppler shift.



Restframe

Systemic rotation and Doppler shift

If the system is rotating as a whole, the observed wavelength
is affected by the Doppler shift. PC2 beautifully describes the
Doppler shift!

  

Redshift BlueshiftRestframe

3.3 Main analysis

Takeuchi et al. (2021)

Doppler shift correction

We estimated the peculiar velocity field (mainly due to the
systemic rotation of the central region of NGC253) by
averaging the results from HCN(4-3), HNC(4-3) and CS(7-6)
lines, and corrected the Doppler shift.
Due to this correction, the final data dimension is d = 1971.
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Eigenvalues of the NGC253 before Doppler correction

Takeuchi et al. (2023)

Index of eigenvalues

Index of eigenvalues
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Eigenvalues of the NGC253 after Doppler correction

Takeuchi et al. (2023)

PC2

PC1

Butterfly-like pattern completely disappeared.

Takeuchi et al. (2023)

PC1 and PC2 from sparse PCA

PC1, PC2, and PC3 from sparse PCA

Takeuchi et al. (2023)

Responsible spectral features for PC1, PC2 and PC3 

Now PC1 more clearly represents the total intensity, and
PC2 and 3 represent smaller-scale velocity structures.

Takeuchi et al. (2023)

Spatial map of PC1 after Doppler correction
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Spatial map of PC2 after Doppler correction
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Spatial map of PC3 after Doppler correction
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Anomaly regions in the velocity field
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What do we see from the Doppler-corrected map?

NGC253

• Pure starburst: SFR in the central molecular zone is 2 M⨀

yr-1 (Rieke et al. 1980; Keto et al. 1999)

• Intense outflow (Matsubayashi et al. 2009; Bolatto et al.
2013)

Indeed the outflow phenomenon is mainly delineated by PC3.

4 Kernel Principal Component Analysis (KPCA)
4.1 Making the PCA nonlinear

Difficult examples

PCA will make no difference between these examples because 
the structure on the left is not linear. 

Are there ways to find nonlinear, low-dimensional manifolds?

Suppose that instead of using the points xi as is, we wanted
to go to some different feature space .

For example, using polar coordinates, instead of cartesian
coordinates, would help us deal with a circle.

In the higher-dimensional space, we can then do PCA.

The result will be nonlinear in the original data space.

Kernel trick: how to make PCA nonlinear
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For the moment, we suppose that the mean of the data
in feature space is 0 (centered). In this case, the
covariance matrix is

and the eigenvectors are

We want to avoid explicitly going to feature space -
instead we want to work with kernels: 

4.2 PCA in feature space: kernel PCA

Kernel PCA

1. Pick a kernel.

2. Construct a normalized kernel matrix of the data (this
will be of dimension m×m).

3. Find the eigenvalues and eigenvectors of this matrix .

4. For any data point (new or old), we can represent it as the
following set

5. We can limit the number of components to k < m for
a more compact representation (by picking the a’s
corresponding to the highest eigenvalues)

Summary of kernel PCA

Data points are color-coded for visual clarity, but the
actual data are unlabeled. We want to project the data
distribution from 3D to 2D.

4.3 Examples

Wang (2012)

Two concentric spheres

Classical PCA
Classical PCA cannot separate the points from the two
spheres.

Two concentric spheres

Wang (2012)

Kernel PCA with a polynomial kernel (d = 5)
Points from one sphere are much closer together, the others are
scattered. The projected data is not linearly separable.

Wang (2012)

Two concentric spheres

Kernel PCA with a Gaussian kernel (σ = 20)

Points from the two spheres are really well separated. We should
note that the choice of parameter for the kernel matters!

Validation can be used to determine good kernel parameter
values.

Two concentric spheres

Wang (2012)
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Extraction of responsible spectral features by A-SPCA is
not possible for the case of kernel PCA.

Eigenspectra cannot be determined for the kernel PCA.

⇒ We should use both classical and kernel PCA for the
physical application.

More careful consideration is needed.

4.4 Problem of kernel PCA 
Feature extraction

5. Summary

1. Spectroscopic mapping and similar methods are
fundamentally important to reveal the ISM physics, but
the data are high-dimensional low sample size.

2. We applied the high-dimensional PCA on the NGC253
spectral map. ALMA mapping data are typically HDLSS
in general, and in this case n = 231 and d = 2228.

3. The controlling feature was HCN(4-3) rotational lines.
PC1 describes the total intensity of the lines, and PC2
represents the Doppler shift caused by the systemic
rotation.

5. Summary

4. After correcting the Doppler shift due to the systemic
rotation, we could obtain information on the smaller-scale
velocity field described by PC2 (new) and PC3. These may
be caused by outflow phenomena of starburst regions.

5. Kernel PCA is a powerful tool to characterize nonlinear
relations in the data. However, since we cannot determine
the eigenspectral, A-SPCA cannot be applied and then we
cannot extract the responsible features. Further
consideration is needed.

If you are interested in details, see Takeuchi et al. 2024, ApJS,
271, 44.

Appendix

Ratio of eigenvalues obtained by traditional and high-
dimensional PCAs (Doppler-corrected)



2024/8/28

11

Rewrite the PCA equation as

So the eigenvectors can be written as a linear combination for
features

Finding the eigenvectors is equivalent to finding the coefficients
aji, j = 1, . . . N, i = 1, . . . m.

Kernel PCA

By substituting this back into the equation, we get

We can rewrite this as

A small trick: multiply this by            to the left, we obtain

Kernel PCA

We plug in the kernel again

By rearranging, we get

We can remove a factor of K from both sides of the matrix
(this will only affect eigenvectors with eigenvalues 0, which
will not be principle components)

Kernel PCA

We have a normalization condition for the aj vectors as

Plugging this into , we get

For a new point x, its projection onto the principal
components is

Kernel PCA

In general, the features may not have a zero mean. Then, we
work with

The corresponding kernel matrix entries are given by:

After some algebra, we get

where 11/m is the matrix with all elements equal to 1/m. This 
operation is referred to as the double centering. 

Normalizing the feature space

Each is the coordinate of along one of the feature space
axes .
Recall that
Since are orthogonal, the projection of onto the space
spanned by them is

(again, sums go to k if k < m).
The reconstruction error in feature space can be evaluated by

This can be rewritten by expanding the norm; we obtain dot
products which can all be replaced by kernels.
Note that the error will be 0 on the training data if enough
are retained.

Representation obtained by kernel PCA


