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Abstract

In earthquake forecasting, there is a significant gap between complete randomness and complete pre-
dictability. This presentation begins by discussing how to quantify predictability and outlining the
current state of earthquake predictability from an information-theoretic perspective, together with the
development line of of the ETAS model.

1 Introduction

Earthquake hazards continue to pose serious threats worldwide, as seen in recent devastating events
like the February 2023 Turkey-Syria earthquake, which resulted in over 50,000 deaths and widespread de-
struction. Such disasters underscore the urgent need for effective earthquake prediction and preparedness.
Earthquakes can trigger tsunamis, landslides, and aftershocks, compounding their destructive impact on
communities, infrastructure, and economies. People hope that scientistic could predict these events be-
fore their occurrence so that we can take actions before hand to avoid our losses of lives and properties
caused the earthquakes. However, it has been commonly accepted in ongoing seismological researches
that predicting the exact time and location of earthquakes remains difficult.

2 Some history

The necessity of earthquake probability forecast arises from the viewpoints of both earthquake physics
and statistical seismology. In 1892, John Milne, James Ewing, and Thomas Cray installed the first model
seismometer in Japan, marking the start of modern seismology. Seismometers enable the detection of
the occurrence of global earthquakes, such that we can calculate their occurrence time and hypocenter
locations, and compile relatively complete earthquake catalogs. The primary applications of statistics
in earthquake studies during this period were simple statistical techniques, such as linear regression and
point estimates, among others, scattered among individual studies on different topics. The following
subsections summarize the main findings during this stage.

The Gutenberg-Richter law for the magnitude-frequency relationship In 1944, Gutenberg and
Richter published a formula describing the relationship between any magnitude, e.g., m, and the number
of earthquakes in any given region and period (Gutenberg and Richter , 1944):

log10N(> m) = a− bm, or, N = 10a−bm, (1)

where N(> m) is the number of earthquakes with a magnitude no less than m in the given region and
period and b is the so-called Gutenberg-Richter b-value. In probability language, the magnitude follows
an exponential distribution.
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Figure 1: Complementary cumulative distributions for seismic moments of simulated earthquakes with
ν=0.999, 0.9999, and 1 (black curves). Dashed curves represent the corresponding asymptotes of the
Pareto (for ν=1) and the tapered Parto (for ν < 1) distributions (after [Zhuang et al. (2016)] with
modifications).

The Omori-Utsu formula for the aftershock frequency The Omori-Utsu formula describes the
decay of the aftershock frequency with time after the mainshock, as an inverse power law in the form of

n(t) = K(t+ c)−p. (2)

where t is the time from the occurrence of the mainshock, and K, c and p are constants ( Omori , 1894;
Utsu, 1957 ).

There are also many other empirical laws, such as the B̊ath law for the maximum magnitude of
aftershocks and scaling laws related to earthquake magnitude.

3 Unpredictability of earthquake

To forecast the occurrence of future disastrous earthquakes. Understanding the physical processes how
earthquake ruptures are generated, accelerated, and stopped, is indispensable. In the 1990s, a series of
papers by Geller et al. (1997) asserted that the occurrence of earthquakes cannot be precisely predicted.
These papers led to a long argument on Nature (https://www.nature.com/nature/debates/earthquake/equake frameset.html).
Even though the view of earthquake forecasting or prediction have changed over past 20 years, these pa-
pers still influening the researches of earthquake forecasting studies. Here I use Vere-Jones’ branching
crack model to explain why earthquake occurrence cannot be deterministically predicted and discuss
what are the potentially useful indices for evaluating the risk of future large earthquakes.

Vere-Jones’s branching crack model Vere-Jones’ branching crack model describes the earthquake
rupture process at the micro scale [Vere-Jones, 1976, 1977; Kagan, 1982]. This model does not assume
any geometric shape for the earthquake rupture. In this model, the basic element of the earthquake
rupture is the shear crack, which can be a small tangential slip on a small patch of the earthquake fault.
Each crack independently triggers dnew cracks nearby on the fault according to some probability rules. In
this way, the rupture process of an earthquake starts from a single crack and develops into an earthquake,
as shown in Figure ??. This process is called the Galton-Watson process in mathematics: (1) The first
generation with only one ancestor, i.e., Y0 = 1; (2) the number of descendants in the (n+ 1)th generation
is the total number of direct offspring from each member of the nth generation, n = 0, 1, · · · , i.e.,

Yn+1 =

Yn∑
j=1

X
(n)
j , (3)
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Figure 2: Simulated source time functions for two large events (c.f. Zhuang et al. (2016)) using a critical
binary branching crack model (p0 = p2 = 0.5 and p1 = p3 = p4 = · · · = 0, pi being the probability that
an ancestor crack triggers i offspring).

where {X(n)
j : j = 1, 2, · · · , Yn} is a set of independent copies of a nonnegative integer random variable

X, representing the number of cracks triggered by a given crack (parent crack). We further assume that
X has a finite expectation ν and a finite variance σ2. Parameter ν plays an essential role in the modelling:
when ν < 1, the family tree extinguishes quickly; when ν = 1, the family still extinguishes but slowly;
when ν > 1, there is some probability that the number of members in the family tree explodes.

Such a simple model can be used to simulate most of the characteristics of earthquake sources. Zhuang
et al. (2016) simulated the Gutenberg-Richter magnitude-frequency relation, the source-time function,
and the duration-moment relationship of earthquakes, under the following assumptions: (a) The energy
released by each crack is the same; (b) the energies are released step-by-step, with each step representing
one generation of the branching process; (c) the energy of the earthquake is proportional to the total
number of cracks; and (d) the rupture duration is proportional to the total number of generations. By
a further assumption that there is a delay between each individual crack and its parent crack, Kagan
(1982) simulated the Omori-Utsu formula for the decay rate of aftershocks, the Utsu-Seki law for the
relationship between the aftershock area and the mainshock magnitude Utsu and Seki (1955), and the
relationship between the mainshock magnitude and the number of aftershocks Yamanaka and Shimazaki
(1990).

Why we cannot know the magnitude of an earthquake before it stops? Assuming that each
branching generation is a time step and that the seismic moment released at each time step is the number
of cracks, Zhuang et al. (2016) simulated the source-time function with the branching crack model. Figure
2 gives two examples of simulations with larger numbers of cracks. Their patterns are quite similar to
the source-time functions after smoothing, exhibiting single or multiple peaks and no fixed shapes. If the
branching process does not stop at a certain time step, any number of cracks or peaks are possible to be
produced in its continuation.

Such inherent randomness explains why the earthquake magnitude cannot be determined before the
dynamic rupture process stops completely. That is to say, the magnitude of an earthquake cannot be
predicted in a deterministic manner during its rupture. This opinion supports Rydelek and Horiuchi
(2006) against that of Olson and Allen (2005, 2006), which declared that the earthquake magnitude
could be determined completely by the first several P -phases.

The stopping time of a rupture process is closely related to the criticality. From the discussion in
Section 2, we can see that, when the concerned area is subcritical, the rupture process can stop easily;
that is, almost no large earthquakes can be generated there. On the other hand, large earthquakes can
be easily generated when the concerned areas are in the critical state on account of the branching crack
process.

Critical Zone One may have the permissive conclusion that the occurrence of earthquakes is completely
unpredictable. We cannot even determine the magnitude of an earthquake during its rupture. How can
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we do it before the initiation of the rupture process, i.e., the occurrence of an earthquake? Such inherent
randomness in the total number of branching cracks really does imply the impossibility of the deterministic
prediction of earthquake occurrence time, location, and magnitude. However, such a conclusion has been
drawn under a simple implicit assumption: The concerned area in which the earthquake occurs is infinitely
large, and its state is homogeneously critical everywhere.

From the viewpoint of fracture mechanics, it is reasonable to link this criticality with the background
stress level relative to the strength of the medium of the seismogenic zone. When the background
tectonic stress increases to the crustal strength of the medium, the state of the seismogenic zone turns
from subcritical to critical. Conversely, a critical zone turns into a subcritical one when the accumulated
tectonic stress is released. In the critical zone, a rupture cannot easily stop. However, once this rupture
extends beyond the critical zone and runs into a subcritical zone, the rupture stops quickly. Zhuang et al.
(2021) discussed what possible approaches can be used to detect the critical zones.

Introducing point processes into statistical seismology In the 1970s with two important fact
happened: the introduction of the point process model and the development of the theory of conditional
intensity in the point process. First, the development of stochastic models for earthquake risks was a
requirement for earthquake engineering. Building codes, with respect to the design of a building structure,
required the consideration of the probability of the occurrence of the largest ground shaking event for a
specific period into the future. In earthquake engineering, the stationary Poisson model (also referred to
as the time-independent model) was often used to estimate the future earthquake hazard.

Considered as a classic reference, Vere-Jones (1970) proposed the point process to describe the process
of earthquake occurrence times, focusing on the tools required to generate a functional and spectrum
analysis. Vere-Jones (1973) introduced the use of the conditional intensity in statistical seismology, which
is defined as the expectation of earthquake occurrence under the condition of previous knowledge on the
earthquake process and/or external observations. They proposed the use of point processes to describe
earthquake occurrence time series and developed tools to generate functional and spectral analyses.

The conditional intensity function is

λ(t)dt = Pr{N [t, t+ dt) > 0 | Observation before t}. (4)

defined as the expected probability of an earthquake occurring in the immediate future, conditional
on the history of past seismic processes and external observational data. The advantage of using the
conditional intensity function is that it is a natural concept for forecasting purposes, including estimation
and simulation (Ogata, 1981).

The core idea of model development is bringing into existing stochastic models with more nonrandom-
ness based on physical theory and observations. During this episode, for long-term earthquake hazard
evaluations, renewal models were developed by modifying the inter-event time in the Poisson model to
more general random distributions. The stress release model was developed by adding Reid’s elastic
rebound theory to the rate function of the Poisson model. For short-term earthquake forecasting, the
Reasenberg and Jones model and the ETAS model were developed based on the Omori-Utsu formula.

Birth of the Hawks Process At about the same time, A. Hawkes, in a series of papers, gave the self-
and mutually induced models in terms of conditional intensity functions and calculated the theoretical
spectral functions of point processes (Hawkes, 1971a,b). In essence, a Hawkes process is a point process
consisting of events generated by the induced effects of all past events under a background stationary
Poisson process. Each event, whether it is a background event or an induced event, induces (excites) the
occurrence of events in turn according to some probability rule. The model has conditional strength of
the form

λ(t) = µ+
∑
i:ti<t

g(t− ti). (5)

where, µ denotes the background rate, and g(t) denotes the self-exciting effect. Specifically, it has been
shown that the Hawkes process corresponds to the infection process (branching stochastic process) of an
epidemic (Kendall , 1949; Hawkes and Oakes, 1974).
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Statistical seismology before the ETAS model The ETAS model combines the Omori-Utsu for-
mula used in aftershock analysis and the Hawkes model. Since the 1950s, the Omori-Utsu formula has
been widely used in the analysis of aftershock activity. Utsu (1962) observed that not only the main shock
but also large aftershocks may induce further aftershocks (secondary aftershocks). Such phenomena are
shown in the following ”multiple Omori-Uzu model”.

λ(t) = K/(t− t0)p +

NT∑
i=1

KiH(t− ti)
(t− ti + ci)pi

, (6)

where t0 is the time of occurrence of the main shock, ti, i = 1, 2, · · · , NT is the time of occurrence of a
significant aftershock, and,H is the Heaviside function. This observation is ground breaking because it
overturns the conventional seismological hypothesis that the mainshock and aftershocks have different
characteristics with respect to earthquake triggering. One difficulty in applying the multiple Omori-Utsu
formula to general earthquake sequences is determining which earthquake triggers other events. The
largest aftershocks are often accompanied by secondary aftershocks, but not always.

The ETAS model As explained by the multiple Omori-Uzu formula, aftershock activity often clearly
includes secondary aftershocks. However, the distinction from primary aftershocks is generally not clear,
and it is difficult to separate secondary aftershocks from seismic series data. In modeling earthquake
occurrence, Ogata (1988) did not distinguish between triggering and triggered earthquakes, and supposed
that each earthquake can trigger aftershocks, with the Omori-Utsu formula as the exciting response
function and a positive exponential function of the magnitude as the productivity. This model was named
as the Epidemic Type Aftershock Sequence (ETAS) model and expressed by a conditional function of

λ(t) = µ+
∑
i:ti<t

κ(mi)g(t− ti), (7)

where g(u) is the normalized form of the Omori-Utsuu formula (p − 1)/c(1 + t/c)−p, and the weighting
function κ(m) = A exp[α(m − m0)] is the expected number of earthquakes directly triggered by an
earthquake of magnitude m. The magnitude of aftershocks need not be smaller than the triggering
earthquake. An independent exponential distribution, i.e., the frequency of occurrence of the Gutenberg-
Richter magnitude-frequency relationship is usually assumed for the purpose of theoretical discussion in
simulation experiments of earthquake series. That is, the marked model takes the conditional intensity
function of

λ(t,m) = s(m)

[
µ+

∑
i:ti<t

κ(mi)g(t− ti)

]
, (8)

where s(m) = βe−beta(m−m0), m ≥ m0 is the probability density function form for the G-R law.

From time model to space-time model Before the ETAS model was generalized to the space-time
ETAS model, Musmeci and Vere-Jones (1992), Kagan (1991), and Rathbun (1993) gave different form
of spatio-temporal models for modelling seismicity. Nowadays, the conditional intensity of the frequently
used spatiotemporal ETAS model is adopted from Ogata (1998):

λ(t, x, y) = µ(x, y) +
∑
i:ti<t

κ(mi)g(t− ti)f(x− xi, y − yi;mi), (9)

where (m) and g(t) are the same as in (7), the spatial response kernel

f(x, y;m) =
1

πσ(m)
f0

(
x2 + y2

σ(m)

)
(10)

is the density function for the relative location of the triggered earthquakes from an event of magnitude
m, with f0 being a normal density function f0(ω) = 1

2D2 e
− ω

2D2 or a scaled inversed power law f0(ω) =
q−1
D2 (1 + ω/D2)−q is considered, and the scaling function is σ(m) = κ(m) or σ(m) = [κ(m)]γ/α.

Spatio-temporal ETAS models are widely used in seismic activity analysis (e.g., see, Ogata, 1998;
Ogata et al., 2003; Zhuang et al., 2002, 2004; Console et al., 2003; Helmstetter et al., 2003; Lombardi
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et al., 2010; Guo et al., 2015a).

Nowadays, the ETAS model has been accepted as the standard model for describing seismic activ-
ity (see special issue of Huang et al. (2016)) and adopted as the main earthquake prediction models
by research institutes and government agencies in major earthquake-prone countries (Schorlemmer et
al., 2018). In particular, the United States Geological Survey (USGS) adopted the ETAS model as the
UCERF3-ETAS model for short-term forecasts in the third all-California earthquake probability fore-
casting model (UCERF3) (Field et al., 2017).

The usefulness of the ETAS model encourage researchers to extend this model to higher dimension
and higher resolution of seismicity, including

• Impact of mainshock rupture geometry Aftershock clusters of larger mainshocks are usually
not isotropic around the epicenter of the mainshock, but are rather aligned along the mainshock
rupture. Hainzl et al. (2008) demonstrated via ETAS simulations that ignoring this fact can lead to
a biased parameter estimation, particularly to an underestimation of the α parameter. To account
for anisotropy, Ogata (1998) used an elliptical aftershock distribution. Recently, Guo et al. (2015b)
developed a finite-source ETAS model that considers the influence that the rupture geometry of
large earthquakes has on the aftershock locations.

• Impact of hypocenter depths Guo et al. (2015a) also developed a 3-D ETAS model to incorpo-
rate the hypocenter depth in the model formulation, where the spatial response is as follows:

f(x, y, z;mi, zi) = f(x, y;mi)h(z, zi) (11)

where h(z, zi) takes form of a rescaled Beta density over the depth range. Zhuang et al. (2019)
showed that the 3-D and finite-source ETAS models performed better than the 2-D point source
ETAS model when fitting them to the Italian catalog.

• Location-dependent and time-dependent ETAS parameters Ogata (2004) developed power-
ful Bayesian tools with penalized likelihoods to estimate the changes in the clustering characteristics
in the form of spatial variation in the model parameters. Zhuang (2015) developed the weighted
likelihood method to estimate the spatial variations in the space-time ETAS model, applying it to
the seismicity of Japan.

• Self-similar ETAS models Vere-Jones (2005) developed a self-similar ETAS model to avoid
problems caused by the cut-off magnitude in the ETAS model and enable fully self-similar features.
Owing to the missing data problem for immediate aftershocks and small events, however, this model
remains theoretically underdeveloped and has not yet been applied to actual seismicity data.

4 Where have we achieved in earthquake forecasting

The predictability of earthquake occurrences is illustrated in Figure 3. This figure situates predictabil-
ity between complete randomness, represented by the Poisson process for time occurrences and the
Gutenberg-Richter relationship for magnitude distribution, and complete determinism, where the target
can be predicted with 100% precision. In recent years, the ETAS model has become a de facto standard
model or null hypothesis for comparing with and testing other models and ideas (Huang et al., 2016;
Zhuang et al., 2021; Zhuang , 2023), which in fact implies that the clustering is the largest predictable
component in seismicity. In the RELM and CSEP projects, the highly scored models are almost among
different versions of the ETAS models. Though there reports declaring non-seismicity precursors, their
performance has not been fully validated.

5 Conclusion and future prospects

As a subject that aims to bridge the gap between physical and statistical models, statistical seismology
has developed rapidly during the last several decades. A significant achievement is the formulation of
conditional intensity models for quantifying time-varying seismicity rates. The conditional intensity is
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(a)

(b)

(c)

Figure 3: An illustration of earthquake predictability.

natural for forecasting and the evaluation of the forecasting performance can be completed in a measured
and statistical manner using the probability gain framework. The ETAS model has especially become a
de facto standard model, or null hypotheses, for comparison with other models and ideas. This suggests
that improvements to our understanding of earthquake clustering can be quantified by developing new
ideas into models and then comparing them to ETAS, or other models, using statistical hypothesis testing.
Ultimately, the rigorous testing of forecast models is necessary to improve our ability to forecast seismic
hazards.

Currently, owing to our inability to observe many of the fundamental processes of the system, as well
as its inherent randomness, it is difficult to deterministically predict individual earthquakes. Therefore,
statistical seismology, which places a larger focus on probabilistic forecasting, represents the best quantifi-
cation method with respect to our state of knowledge. Furthermore, to provide more reliable earthquake
forecast models, the challenge becomes the construction of models that can yield increased information
gain with respect to a reference of the ETAS model.

With the rapid development of observation technologies, an increasing amount of observational data
has been obtained. These new observations provide new theories and approaches to help us understand
seismicity. Based on these new observations, seismologists can develop new methods to more efficiently
analyze these data and new models to connect them to the earthquake process and tectonic environments,
thus providing more knowledge on the earthquake occurrence process and and the ability to obtain reliable
forecasts.
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