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Abstract

When we have two failure times T1 and T2 and our primary interest is in the associ-
ation between them, we need families of bivariate survivor functions for statistical model-
ing. Postulating some desirable properties on certain conditional hazard functions, Clayton
(1978, Biometrika) derived such a family now called Clayton-Oakes model. Prentice (2016,
Biometrika) proposed a generalization of the Clayton-Oakes model, but it is not clear that
his generalized model gives a proper multidimensional survivor function. In this expository
note, we begin with the review of the original Clayton-Oakes model and the key concept of
cross ratio, and discuss the validity of Prentice’s generalization.

1 Introduction

Cox and Oakes [2] list a number of desirable properties for these families:

(i) The association between T1 and T2 is governed by a single parameter θ which has a simple
physical interpretation.

(ii) The marginal survivor functions can be specified arbitrarily and, if desired, parameterized
separately from θ.

(iii) Either negative or positive association should be permissible, and the special cases of
independence and the Fréchet-Hoeffding bounds are achievable within the family.

(iv) Reasonably simple parametric and semiparametric procedures are available for estimating
θ, even in the presence of censoring in either or both components.

The resulting model is called the Clayton-Oakes model, which is the first semiparametric bivari-
ate model for a pair of survival times, and it has a great advantage of clear interpretation with
constant cross ratio function.

Recently Prentice [13] (also Prentice and Zhao [14]) has proposed a generalization of the
Clayton-Oakes model, but it is not clear that his generalized model gives a proper multidi-
mensional survivor function. In this expository note, we begin with the review of the original
Clayton-Oakes model and the key concept of cross ratio, and discuss the validity of Prentice’s
generalization.
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2 Review of Clayton-Oakes Model

Let T1 and T2 be two failure times with continuous joint survivor function

S(t1, t2) = P(T1 > t1, T2 > t2), t1, t2 ∈ R+.

We denote the conditional hazard function of T1 given T2 = t2 by λ1(t1 |T2 = t2), and the
conditional hazard function of T1 given T2 ≥ t2 by λ1(t1 |T2 ≥ t2).

Clayton [1] postulates that they are proportional:

λ1(t1 |T2 = t2) = (1 + θ)λ1(t1 |T2 ≥ t2), t1, t2 ∈ R+ (2.1)

It is straightforward to see that

λ1(t1 |T2 = t2) = − ∂

∂t1
log

[
−∂S(t1, t2)

∂t2

]
,

and

λ1(t1 |T2 ≥ t2) = − ∂

∂t1
logS(t1, t2).

Plugging these into (2.1) and integrating with respect to t1 yield

log

[
−∂S(t1, t2)

∂t2

]
− log

[
−∂S2(t2)

∂t2

]
= (1 + θ)[logS(t1, t2)− logS2(t2)].

Integrating with respect to t2 after exponentiation gives

S(t1, t2)
−θ − S1(t1)

−θ = S2(t2)
−θ − 1.

Thus we obtain
S(t1, t2) =

[
S1(t1)

−θ + S2(t2)
−θ − 1

]−1/θ
.

This is a model Clayton [1] first derived, and Oakes [10, 11] studied the model carefully and
developed a semiparametric method of inference. Hence this model is called the Clayton-Oakes
model.

In terms of copula model, this corresponds to a so-called (2-dimensional) Clayton copula:

C(u1, u2) =
(
u−θ + v−θ − 1

)−1/θ
∨ 0, θ ∈ [−1,∞) \ {0}. (2.2)

This family is an example of Archimedean copulas.

2.1 Archimedean copulas

A copula is a distribution function on [0, 1]d with uniform marginals, and joins a multivariate
survivor function to their one-dimensional marginals, which indicates that we can separately
model univariate marginals and dependence structure. This flexibility of copula models is a
great advantage in modeling multivariate event history data. Copulas are also useful in defining
various concepts and measures of dependence. For generalities on copulas, consult Joe [6, 7] and
Nelsen [9]. Hougaard [5] contains much broader topics in multivariate survival analysis.

Definition 2.1
(i) A nonincreasing and continuous function ψ : [0,∞) → [0, 1] which satisfies the conditions

ψ(0) = 1 and limx→∞ ψ(x) = 0 and is strictly decreasing on [0, x0) where x0 := {x : ψ(x) =
0} is called an Archimedean generator.
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(ii) A d-dimensional copula C is called Archimedean if it has the representation

C(u1, . . . , ud) = ψ
(
ψ−1(u1) + · · ·+ ψ−1(ud)

)
, u1, . . . , ud ∈ [0, 1] (2.3)

for some Archimedean generator ψ and its inverse ψ−1 : (0, 1] → [0,∞) where, by conven-
tion, ψ−1(0) = x0.

For C in (2.3) to be a genuine copula, the following conditions, separately for d = 2, a fixed
d ≥ 3, all d ≥ 2, are known to be necessary and sufficient.

Theorem 2.2 Suppose that ψ is an Archimedean generator.

(i) The function ψ
(
ψ−1(u1) + ψ−1(u2)

)
is a copula iff ψ is convex.

(ii) The function ψ
(
ψ−1(u1)+ · · ·+ψ−1(ud)

)
is a copula for a fixed d iff ψ is d-monotone on

[0,∞)

(iii) The function ψ
(
ψ−1(u1)+· · ·+ψ−1(ud)

)
is a copula for all integer d ≥ 2 iff ψ is completely

monotone on [0,∞)

The following are examples of Archimedean generator.

• Clayton: ψ(x) = (1 + x)−1/θ, ψ−1(u) = u−θ − 1

• Gumbel-Hougaard: ψ−1(u) = (− log u)θ

• Frank: ψ−1(u) = − log
eθu − 1

eθ − 1

• Independence: ψ−1(t) = − log t

• Countermonotone: ψ−1(t) = 1− t

Archimedean copulas may be related to the frailty model in survival analysis. Let W be
a frailty (latent variable), and suppose that T1, . . . , Td are conditionally independent given W ,
and that the conditional survivor function of Ti given W is given by

Si(ti|W ) =
(
Hi(xi)

)W
(Lehmann alternative),

where Hi is a baseline survivor function. Let ψ(t) := E[e−tW ] be the Laplace transform of W .
Then the marginal survivor function of Ti is given by

Si(ti) = ψ(− logHi(ti)).

Denoting the joint survivor function T1, . . . , Td by S(t1, . . . , td), we have

S(t1, . . . , td) = E
[(
H1(t1) · · ·Hd(td)

)W ]
= ψ

[
ψ−1

(
S1(t1)

)
+ · · ·+ ψ−1

(
Sd(td)

)]
The corresponding copula is clearly Archimedean and its generator is the Laplace transform of
W .

Example 2.3

• If W has a gamma distribution, then the resulting copula is Clayton.

• If W has a positive stable distribution, then the resulting copola is Gumbel-Hougaard.
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2.2 Cross ratio function

Suppose that a bivariate survivor function S(t1, t2) is absolutely continuous, and put

∂12S(t1, t2) =
∂2S

∂t1∂t2
(t1, t2), ∂iS(t1, t2) =

∂S

∂ti
(t1, t2), i = 1, 2.

Recall from (2.1) in Clayton-Oakes model, it is postulated that two hazard functions λ1(t1 |T2 =
t2) and λ1(t1 |T2 ≥ t2) are proportional. Since

λ1(t1 | T2 = t2) =
−∂12S(t1, t2)
−∂2S(t1, t2)

, λ1(t1 | T2 ≥ t2) =
∂1S(t1, t2)

S(t1, t2)
,

we have
λ1(t1 |T2 = t2)

λ1(t1 |T2 ≥ t2)
=

S(t1, t2)∂12S(t1, t2)

∂1S(t1, t2)∂2S(t1, t2)
.

This important function of (t1, t2) has its own name.

Definition 2.4 For an absolutely continuous bivariate survivor function S(t1, t2), its cross ratio
function is defined by

θ∗(t1, t2) :=
λ1(t1 |T2 = t2)

λ1(t1 |T2 > t2)
=

S(t1, t2)∂12S(t1, t2)

∂1S(t1, t2)∂2S(t1, t2)

Thus the Clayton-Oakes model amounts to assuming that the cross ratio function is constant
(independent of (t1, t2)).

Furthermore, a bivariate survivor function whose associated copula is Archimedean can be
characterized by a property of the cross ratio function.

Theorem 2.5 (Oakes [12]) There exists a function θ for which θ∗(t1, t2) = θ
(
S(t1, t2)

)
holds

iff the survival copula of (T1, T2) is Archimedean.

3 Prentice’s Extension

3.1 Trivariate case

In Section 2 of Prentice [13], it is stated that “A trivariate generalization with unrestricted
marginal and pairwise marginal survivor functions is

S(t1, t2, t3) =
{
S(t1, t2, 0)

−θ + S(t1, 0, t3)
−θ + S(0, t2, t3)

−θ

− S(t1, 0, 0)
−θ − S(0, t2, 0)

−θ − S(0, 0, t3)
−θ + 1

}−1/θ ∨ 0,

where −1 ≤ θ <∞.” This is a functional equation in S(t1, t2, t3), and it is not clear that there
exists a 3-dimensional survivor function S(t1, t2, t3) satisfying this equation. So the problem
should be correctly posed in the following way.

Problem Given three bivariate sf’s S12(t1, t2), S13(t1, t3), S23(t2, t3) satisfying the compati-
blility conditions

S12(t1, 0) = S13(t1, 0) =: S1(t1),

S12(0, t2) = S23(t2, 0) =: S2(t2),

S13(0, t3) = S23(0, t3) =: S3(t3),
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is the function G defined by

G(t1, t2, t3) =
{
S12(t1, t2)

−θ + S13(t1, t3)
−θ + S23(t2, t3)

−θ

− S1(t1)
−θ − S2(t2)

−θ − S3(t3)
−θ + 1

}−1/θ ∨ 0

a proper survivor function?

The problem can be stated in terms of copulas as well. Let C12(u1, u2), C13(u1, u3), C23(u2, u3)
be the copula associated with S12(t1, t2), S13(t1, t3), S23(t2, t3); namely

S12(t1, t2) = C12(S1(t1), S2(t2)),

S13(t1, t3) = C13(S1(t1), S3(t3)),

S23(t2, t3) = C23(S2(t2), S3(t3)).

The problem is then reduced to whether the function

Ĝ(u1, u2, u3) =
{
C12(u1, u2)

−θ + C13(u1, u3)
−θ + C23(u2, u3)

−θ

− u−θ
1 − u−θ

2 − u−θ
3 + 1

}−1/θ ∨ 0

is a (proper) copula for any given copulas C12, C13 and C23.

3.2 Counterexample

For simplicity, consider the case θ > 0. We have

Ĝ(u1, u2, 1) =
{
C12(u1, u2)

−θ + C13(u1, 1)
−θ + C23(u2, 1)

−θ − u−θ
1 − u−θ

2

}−1/θ

= C12(u1, u2)

Similarly one can check that Ĝ(u1, 1, u3) = C13(u1, u3) and Ĝ(1, u2, u3) = C23(u2, u3).
Let C12, C13 and C23 be the Gaussian copulas with correlation coefficient 2/3, −1/2 and 1/2

respectively; S1, S2 and S3 be the standard normal distribution function. For these choices, if

G(t1, t2, t3) =
{
S12(t1, t2)

−θ + S13(t1, t3)
−θ + S23(t2, t3)

−θ

− S1(t1)
−θ − S2(t2)

−θ − S3(t3)
−θ + 1

}−1/θ

is a proper survival function, then the corresponding correlation matrix must be 1 2/3 −1/2
2/3 1 1/2
−1/2 1/2 1

 ,

which is not nonnegative definite. Hence G(t1, t2, t3) cannot be a proper survival function.

Unsolved Problem

Under what condition(s), G is a proper survival function, or Ĝ is a proper copula?
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Note For the reference, we record the following analytical conditions for a function to be a
copula.

Theorem 3.1 A function C : [0, 1]d → [0, 1] is a copula if and only if it satisfies the following
three conditions:

• C is grounded: C(u) = 0 whenever at least one of the uj ’s equals 0.

• C has uniform marginals: C(1, . . . , 1, uj , 1, . . . , 1) = uj for all j = 1, . . . , d.

• C is d-increasing: For all u,v ∈ [0, 1]d with uj < vj for all j = 1, . . . , d, we have∑
(−1)#{j : wj=uj}C(w) ≥ 0

where the sum is taken over all w such that wj = uj or vj for all j = 1, . . . , d.

It is typically hard to check whether a given function is copula using these analytical conditions.

4 Remarks

Some other future research problems are the following.

• Is it possible to extend this method of construction to general Archimedean copulas (cf.
McNeil and Nešlehová [8])?

• Rigorous theoretical development including general survivor function (not necessarily ab-
solutely continuous). See Dabrowska [3, 4].

• Estimation method for θ

• Can we incorporate covariates in the model?

• Is there any connection with nested/hierarchical Archimedean copulas (Joe [6])?
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