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1 Introduction

Hierarchical clustering is a methodology to group a set of datas by building den-
drogram based on a similarity or a dissimilarity between clusters so that datas in a
cluster are similar in the sense of pre-determined linkage function. In hierarchical
clustering, one can observe a process how a cluster is combined or devided through
dendrogram on graphic. Hierarchical clustering has been approved as useful tool
for analysis of gene expression microarray data. In fact, applications of hierarchical
clustering on gene expression microarray data are given by Eisen et al. [4], Perou et
al. [9], Bhattacharjee et al. [2], among others. A characteristic of datas used in Eisen
et al. [4], Perou et al. [9] and Bhattacharjee et al. [2] is that the number of variables
is much larger than sample size. This type of data represented by gene expression
microarray data is called high-dimension, low-sample-size (HDLSS) data. Substan-
tial work about clustering has been done on HDLSS asymptotics in recent years.
Liu et al. [7] proposed a two-way split clustering called “statistical significance of
clustering(SigClust)” especially for HDLSS data. Ahn et al. [1] proposed a hierar-
chical divisive clustering and considered its high dimensional asymptotics. Huang
et al. [5] developed the SigClust by Liu et al. [7] with soft thresholding approach.
Kimes et al. [6] proposed a methodology to sequentialy test statistical significance
of hierarchical clustering controling the family-wise error rate in HDLSS settings.
Yata and Aoshima [11] gave consistency properties of sample principal component
scores and applied it to clustering under high dimensional settings. Nakayama et
al. [8] investigated clustering by kernel principal component analysis for HDLSS
data. Borysov et al. [3] studied behaviors of hierarchical clustering under several
asymptotic settings from moderate dimension through HDLSS, nevertheless it is
considered that theoretical assumptions are strict for HDLSS data due to having
discussions on several asymptotic settings at once. Given this background, we fo-
cus on HDLSS settings and consider asymptotic properties of hierarchical clustering
with several linkage functions.

In this talk, we investigate the hierarchical clustering theoretically in the HDLSS



context as dimension goes to infinity while sample size is fixed.

2 Formulation of Hierarchical Clustering

Hierarchical clustering is generally classified into two types : agglomerative cluster-
ing and divisive one. Hierarchical agglomerative clustering is a bottom-up approach.
At first, every data point is considered as a cluster of its own. Then, two nearest
clusters are combined at each procedure. In the end, all datas belong to one single
cluster. Hierarchical divisive clustering is so-called a top-down approach. At first,
every data point is considered as one single cluster. Then, a clusters is split up into
two clusters at each procedure. In the end, every data belongs to a single cluster of
its own. To proceed the hierarchical agglomerative clustering, we need to consider
O(n3) computations in whole process when the data set contains n samples. On
the other hand, to proceed the hierarchical divisive clustering, it is necessary to
consider the all devisions of the dataset into two nonempty subsets which require
2n−1 − 1 computations when the data set contains n samples. The computation
number grows exponentially and easily become prohibitive. Thus, we focus on the
hierarchical agglomerative clustering in this talk.

2.1 Hierarchical clustering

The function to measure a similarity or a dissimilarity between clusters is called
linkage function, which are introduced in Section 2.2. Generally, a dendrogram built
by hierarchical clustering shows an arrangement of clusters and distances between
clusters. An intersection indicates that two clusters are combined and a height of
horizontal segment at any intersection stands for a distance between clusters. A
dendrogram shows a process of hierarchical clustering from the bottom toward the
top, which means that lower an intersection is, earlier the cluster are combined.

2.2 Linkage function

In this talk, we only take the Euclidean distance to define linkage functions. Suppose
we have two setsX i = {xi1, · · · ,xini

} of size ni for i = 1, 2 and d(z1, z2) is a distance
between samples z1 and z2. In this talk, d(z1, z2) = ∥z1 − z2∥, where ∥ · ∥ denotes
the Euclidean norm. Then, the linkage functions, the distance between clusters, can
be defined as follows.



1. Single linkage function

D1(X1,X2) = min
x1∈X1,x2∈X2

d(x1,x2)

2. Average linkage function

D2(X1,X2) =
1

n1n2

∑
x1∈X1

∑
x2∈X2

d(x1,x2)

3. Ward’s linkage function

D3(X1,X2) = (2 (SS(X1 ∪X2)− SS(X1)− SS(X2)))
1/2

where SS(Z) =
∑

z∈Z ∥z −
∑

z′∈Z z′/|Z|∥2 and |Z| is the number of data in Z for
any set Z. Single linkage function measures distance between clusters as closest dis-
tance between datas from each clusters. Average linkage function measures distance
between clusters as average distance between datas from each clusters. Example
of application of the hierarchical clustering with average linkage function on gene
expression microarray data is found in Eisen et al. [4]. Ward’s linkage function is
proposed by Ward [10]. We emphasize that Ward’s linkage function can be expressed
as

D3(X1,X2) =

√
2n1n2

n1 + n2

∥∥∥∥∥ 1

n1

n1∑
j=1

x1j −
1

n2

n2∑
j=1

x2j

∥∥∥∥∥ .
This indicates that Ward’s linkage function magnifies a distance between clusters
due to the coefficient

√
2n1n2/(n1 + n2) in general. Although there are a large

number of linkage functions besides the above, we focus on the single, average, and
Ward’s linkage functions here.

In the next section, we show asymptotic properties of hierarchical clustering with
single, average and Ward’s linkage functions under HDLSS settings.

3 Asymptotic behaviors

Borysov et al. [3] supposed that the number of populations is potentially two and
proposed three asymptotic behaviors about hierarchical clustering as follows:

(A): Every data point from one population combined only with any cluster from
the same population and every data point from the other population combined
only with any cluster from the same population before the last step. Then,
one cluster and the other cluster will be combined in the last step.



(B): Every data point from one population combined with any cluster from the
same population. Then, any point from the other population will be added
sequentially one by one.

(AB): Every data point from one population combined with any cluster from the
same population. Then, after that, one subcluster consist of data points only
from the other population created at least.

The behavior (A) occurs when the every distance between data points from one
population are smaller than from the other population and any distances between
data points from one population and the other population and the every distance in
data points from the other population are smaller than any distance between data
points from one population and the other population. The behavior (B) occurs when
the every distance between data points from one population are smaller than from
the other population and any distances between data points from one population and
the other population and the any distances in data points from the other population
are larger than any distance between data points from one population and the other
population. The behavior (AB) is an event between (A) and (B). (AB) occurs when
the every distance between data points from one population are smaller than data
points from the other population and any distances between data points from one
population and the other population and some distances between data points from
the other population are smaller than a distance between mixed cluster of all points
from one population and some points from the other population and any point from
the other population.

Borysov et al. [3] studied the difference of the behavior theoretically under
several asymptotic settings from moderate dimension through HDLSS. However,
Borysov et al. [3] considered strict assumptions especially for HDLSS data due to
having discussions on several asymptotic settings at once. We derive asymptotic
properties of hierarchical clustering under mild and practical assumptions.

Suppose we have two independent and d-variate populations, Πi having un-
known mean vector µi and unknown covariance matrix Σi for i = 1, 2. We suppose
tr(Σ1) ≤ tr(Σ2) for simplicity. We consider 2 classes case in this paper which is the
fundamental case to generalize a latent number of populations.

Suppose that we have independent and identically distributed (i.i.d.) observa-
tions, x11, . . . ,x1n1 from Π1 and x21, . . . ,x2n2 from Π2. Let X i = {xi1, . . . ,xini

}
and Ki = Var[∥xij − µi∥2] for i = 1, 2. As necessary, we assume for the asymptotic
setting that only d grows that

(A-i): tr(Σ2
i )/∆

2
M → 0 for i = 1, 2 as d → ∞ and n1 and n2 are fixed;

(A-ii): Ki/∆
2
M → 0 for i = 1, 2 as d → ∞ and n1 and n2 are fixed,



where ∆M = max{∆,∆Σ}, ∆ = ∥µ1 − µ2∥2, and ∆Σ = |tr(Σ1) − tr(Σ2)|. These
assumptions are fairly common under HDLSS settings. Then, we have the following
results.

Theorem 3.1. Assume (A-i), (A-ii) and some regularity conditions.

(1) If lim sup
d→∞

∆Σ

∆
< 1, the probability of hierarchical behavior (A) when single or

average linkage function is used converges to 1 as d → ∞ when n1 and n2 are
fixed.

(2) If lim inf
d→∞

∆Σ

∆
> 1, the probability of hierarchical behavior (B) when single or

average linkage function is used converges to 1 as d → ∞ when n1 and n2 are
fixed.

We obtain the threshold to devide the asymptotic behavior (A) and (B) under
mild conditions (A-i) and (A-ii). Behavior (A) happens when the distance between
µ1 and µ2 are larger than the difference between tr(Σ1) and tr(Σ2). Behavior
(B) happens when the distance between µ1 and µ2 are smaller than the difference
between tr(Σ1) and tr(Σ2). It follows from Theorem 3.1 that behavior for hierar-
chical clustering by single and average linkage functions are asymptotically same.
But, we will observe that convergence rates differ depending on linkage functions by
numerical simulations in talk.

Theorem 3.2. Assume (A-i), (A-ii) and some regularity conditions.

(1) If lim sup
d→∞

∆Σ

n1∆
< 1, the probability of hierarchical behavior (A) when Ward’s

linkage function is used converges to 1 as d → ∞ when n1 and n2 are fixed.

(2) If lim inf
d→∞

∆Σ

n1∆
> 1, the probability of hierarchical behavior (B) when Ward’s

linkage function is used converges to 1 as d → ∞ when n1 and n2 are fixed.

Unlike Theorem 3.1 with single and average linkage functions, the boundary
condition depends on the sample size of the cluster with smaller variance than the
other. This difference from the case with single and average linkage functions makes
the hierarchical clustering with Ward’s linkage function prone to fall into asymptotic
behavior (A). It is considered as natural consequences because the distance between
two clusters measured by Ward’s linkage function is generally expanded under the
influence of the sample sizes.
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