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Abstract

Shrinkage estimation of Poisson means is considered when observations are given in the form of a two-way con-
tingency table. Assuming a multiplicative Poisson model, estimators which shrink to the specified values or an
order statistic in one dimension and in two dimensions are considered and are shown to dominate the maximum
likelihood estimator (MLE) under normalized squared error loss. Further, assuming the full model, shrinkage to
the multiplicative model is devised to improve upon the unbiased estimator by finding out the patterns where the
observed frequency is not smaller than the estimated frequency for each cell.

1 Introduction

We consider two-way multiplicative model where xij , i = 1, . . . , I, j = 1, . . . , J , are independent random Poisson
random variables with means

λij = λαiβj , i = 1, . . . , I, j = 1, . . . , J,

where αi ≥ 0 and βj ≥ 0 satisfy
∑I
i=1 αi = 1 and

∑J
j=1 βj = 1, respectively. We denote the one-dimensional

frequencies and the total frequency by

xi+ =

J∑
j=1

xij , i = 1, . . . , I, x+j =

I∑
i=1

xij , j = 1, . . . , J, x++ =

I∑
i=1

J∑
j=1

xij .

As discussed in Hara and Takemura (2006) complete sufficient statistics are x1 = (x1+, . . . , xI+) and x2 =
(x+1, . . . , x+J). The MLE of λij is

λ̂ML
ij =

{ xi+x+j
x++

if x++ 6= 0

0 if x++ = 0.

They have given a class of improved estimators which shrink the MLE toward the origin under the normalized
squared error loss. The simple one is

δHTij =
xi+x+j
x++

{
1− d

x++ + d

}
, i = 1, . . . , I, j = 1, . . . , J,

The following lemma is a special case of Lemma 2.1 of Hara and Takemura (2006) and is useful to evaluate the
risk of the shrinkage estimators when normalized squared error loss is concerned.

Lemma 1.1. If g(x1,x2) is a real-valued function satisfying E|g(x1,x2)| <∞ and g(x1,x2) = 0 when xi+ = 0 or
x+j = 0, then

E

{
g(x1,x2)

λij

}
= E

{
(x++ + 1)

(xi+ + 1)(x+j + 1)
g(x1 + eIi ,x2 + eJj )

}
,

where eIi (eJj ) is I × 1 (J × 1) unit vector with i-th (j-th) component 1.

2 One-dimensional shrinkage to an order statistic or a specified point

2.1. One-dimensional shrinkage to an order or a specified point statistic.

Let x(`)+ be the `-th smallest observation among x1+, . . . , xI+. We assume that I ≥ `+2 and consider the following
estimator which shrinks xi+ toward x(`)+ when xi+ ≥ x(`)+:

δ
(1)
ij =

x+j
x++

{
xi+ − ϕ(W )

(xi+ − x(`)+)+

W + d

}
, i = 1, . . . , I, j = 1, . . . , J,
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where W =
∑I
i=1(xi+ − x(`)+)+, a+ = max(0, a) and d is a positive constant. Then we have the following.

Theorem 2.1. Suppose that ϕ(W ) is a non-decreasing function satisfying 0 ≤ ϕ(W ) ≤ 2(I − `− 1) and that d ≥
supϕ(W )/2. Then δ

(1)
ij , i = 1, . . . , I improves upon the MLE λML

ij , i = 1, . . . , I under the loss function
∑I
i=1(λ̂ij −

λij)
2/λij for any j = 1, . . . , J .

Remark 2.1. Theorem 2.1 can be generalized directly to the case of Poisson multiplicative model for a multi-way
contingency tables by using a lemma (Lemma 3.1 of Hara and Takemura (2006)) which is a generalization of Lemma
2.1. For example, consider the case of a 3-way contingency table xijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K where
xijk are independent Poisson random variables with means λijk. Let xi++, x+j+, x++k and x+++ denote the
one-dimensional marginal frequencies and the total frequency. Let j and k be arbitrarily fixed and consider the
simultaneous estimation of λ1jk, . . . , λIjk under the loss function

∑I
i=1(λ̂ijk−λijk)2/λijk. Then, by adopting similar

notations and conditions on ϕ(W ) and d, we see that the estimator

x+j+x++k

x2+++

{
xi++ − ϕ(W )

(xi++ − x(`)++)+

W + d

}
, i = 1, . . . , I

improves upon the MLE xi++x+j+x++k/x
2
+++, i = 1, . . . , I.

2.2. One-dimensional shrinkage to a specified point

Let bi ≥ 0, i = 1, . . . , I be given numbers and we propose the following shrinkage estimator which shrinks xi+ to bi
when xi+ ≥ bi:

δ
(2)
ij =

x+j
x++

{
xi+ − ϕ(N,W )

(xi+ − bi)+

W + d(N)

}
, i = 1, . . . , I, j = 1, . . . , J,

where W =
∑I
i=1(xi+ − bi)+ and N = #{i|xi+ ≥ bi}. Then we have the following.

Theorem 2.2, Suppose that ϕ(N,W ) is a non-decreasing function of W and satisfies 0 ≤ ϕ(N,W ) ≤ 2(N − 1)+

for any 0 ≤ N ≤ I. Suppose that d(N) ≥ supW ϕ(N,W )/2. Then δ
(2)
ij , i = 1, . . . , I improves upon the MLE

λ̂ML
ij , i = 1, . . . , I under the loss function

∑I
i=1(λ̂ij − λij)2/λij for any j = 1, . . . , J .

It may be noticed that the shrinkage is made only when N ≥ 2.

2.3. Two-dimensional shrinkage to order statistics.

Let x(`)+ and x+(m) be the `-th and m-th smallest observation among x1+, . . . , xI+ and x+1, . . . , x+J , respectively.
We assume that I ≥ ` + 2 and J ≥ m + 2 and consider the estimator which shrinks xi+ toward x(`)+ when
xi+ ≥ x(`)+ in the first dimension and shrinks x+j toward x+(m) when x+j ≥ x+(m) in the second dimension

simultaneously. To improve upon the MLE λ̂ML
ij , we propose the following estimator :

δ
(3)
ij =

1

x++

{
xi+ − ϕ1(W1)

(xi+ − x(`)+)+

W1 + d1

}{
x+j − ϕ2(W2)

(x+j − x+(m))
+

W2 + d2

}
,

i = 1, . . . , I, j = 1, . . . , J, (2.4)

where W1 =
∑I
i=1(xi+ − x(`)+)+ and W2 =

∑J
j=1(x+j − x+(m))

+ and d1 and d2 are positive constants. Then we
have the following.
Theorem 2.3. Suppose that ϕ1(W1) and ϕ2(W2) are non-decreasing functions satisfying 0 ≤ ϕ1(W1) ≤ I−`−1 and
0 ≤ ϕ2(W2) ≤ J−m−1, respectively. If d1 ≥ (I−`−1)/(I−`) supϕ1(W1) and d2 ≥ (J−m−1)/(J−m) supϕ2(W2).

Then δ
(3)
ij , i = 1, . . . , I, j = 1, . . . , J improves upon the MLE λ̂ML

ij under the loss function
∑I
i=1

∑J
j=1(λ̂ij−λij)2/λij .

We also consider two-dimensional shrinkage to the order statistics and to the specified two positive values.
Remark 2.3. Theorem 2.3 is directly generalized to the case of multi-way contingency tables. Since the notations
and conditions are essentially the same, we only give a sketch of the result for the case of 3-way contingency table.
We shrink xi++ toward x(`)++ when xi++ ≥ x(`)++ in the first dimension and shrink x+j+ toward x+(m)+ when
x+j+ ≥ x+(m)+ in the second dimension. Under the loss function

I∑
i=1

J∑
j=1

(λ̂ijk − λijk)2/λijk,
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where k = 1, · · · ,K is arbitrarily fixed, the improved estimator is given by

δijk =
x++k

x2+++

{
xi++ − ϕ1(W1)

(xi++ − x(`)++)+

W1 + d1

}
{
x+j+ − ϕ2(W2)

(x+j+ − x+(m)+)+

W2 + d2

}
, i = 1, . . . , I, j = 1, . . . , J.

2.4. Two-dimensional shrinkage to a specified point.

Let bi ≥ 0, i = 1, . . . , I and cj ≥ 0, j = 1, . . . , J be given numbers. Assuming that I, J ≥ 2, we shrink xi+ to bi
when xi+ ≥ bi and x+j to cj when x+j ≥ cj . To improve upon the MLE λ̂ML

ij , we propose the following estimator

δ
(4)
ij =

1

x++

{
xi+ − ϕ1(N1,W1)

(xi+ − bi)+

W1 + d1(N1)

}{
x+j − ϕ2(N2,W2)

(x+j − cj)+

W2 + d2(N2)

}
,

i = 1, . . . , I, j = 1, . . . , J, (2.5)

where W1 =
∑I
i=1(xi+ − bi)+,W2 =

∑J
j=1(x+j − cj)+, N1 = #{i|xi+ ≥ bi, i = 1, . . . , I} and N2 = #{j|x+j ≥

ci, j = 1, . . . , J}. Although it may be natural to put the condition
∑I
i=1 bi =

∑J
j=1 cj , we do not need it in the

following.

Theorem 2.4. Suppose that ϕi(Ni,Wi) is a non-decreasing function of Wi and satisfies 0 ≤ ϕi(Ni,Wi) ≤ (Ni−1)+

for any Ni ≥ 0, and that di(Ni) ≥ (Ni − 1)+/Ni supWi
ϕi(Ni,Wi), for any Ni ≥ 0, i = 1, 2. Then δ

(4)
ij improves

upon the MLE λ̂ML
ij under the loss function

∑I
i=1

∑J
j=1(λ̂ij − λij)2/λij .

It may be noticed that the shrinkage in the i−th dimension is made only when Ni ≥ 2.

2.5. A discussion.

Here we mention the possibility of the two-dimensional shrinkage estimators other than δ
(3)
ij and δ

(4)
ij given in

subsections 2.3 and 2.4, respectively. We only give two alternative estimators for δ
(4)
ij . The following estimator is

the simple average of the one-dimensional shrinkage estimator δ
(2)
ij and its counterpart which makes shrinkage in

the second dimension:

xi+x+j
x++

− ϕ1(N1,W1)

2

x+j
x++

(xi+ − bi)+

W1 + d1(N1)
− ϕ2(N2,W2)

2

xi+
x++

(x+j − cj)+

W2 + d2(N2)
,

where Wi and Ni, i = 1, 2, are defined in 2.4. It is easily shown that this estimator improves upon the MLE when
ϕ(Ni,Wi) and di(Ni), i = 1, 2, satisfy the similar conditions as given in Theorem 2.2.

We may pool W1 and W2 and consider the following estimator

xi+x+j
x++

− ϕ(N,W )

2

x+j(xi+ − bi)+ + xi+(x+j − cj)+

x++{W + d(N)}
,

where W = (W1 + W2)/2 and N = N1 + N2. Although this estimator will dominate the MLE under suitable
conditions on ϕ(N,W ) and d(N), we do not pursue it here further.

Unfortunately, these two estimators do not give the estimates which belong to the parameter space of the

multiplicative Poisson models, whereas the estimators δ
(3)
ij and δ

(4)
ij do.

3 Shrinkage to the multiplicative Poisson model

Here we consider saturated (full) model and propose a shrinkage method to the multiplicative model to improve
upon the unbiased estimator. In 3.1 we deal with the 2 × 3 table case to explain the idea of the method. In 3.2
general two-way contingency table is treated. A numerical example is given in 3.3 and a discussion is given in 3.4.
Although the numbers of rows and columns are denoted by I and J in Section 2, here we denote them by m and
n for simplicity.

Now we state a useful result due to Chang and Shinozaki (2019). Let xi be distributed as Po(λi), i = 1, . . . , p,
and suppose that x1, . . . , xp are statistically independent. Let bi, i = 1, . . . , p, be specified non-negative values
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and let C = {(x1, . . . , xp)|xi ≥ bi, i = 1, . . . , p}. We consider a class of estimators which shrink only when
x = (x1, . . . , xp) ∈ C. Letting IC be the indicator function of C, estimators of the following form are considered:

δi(x) = xi − ϕ(W )
(xi − bi)
W + d

IC , i = 1, . . . , p, (3.1)

where W =
∑p
i=1(xi − bi) and d is a positive constant. For p ≥ 2, Chang and Shinozaki (2019) have shown the

following.
Lemma 3.1. Let ϕ(·) be a non-decreasing function which satisfies 0 ≤ ϕ(·) ≤ 2(p − 1) and suppose that d ≥
supϕ(·)/2. Then (δ1(x), . . . , δp(x)) dominates x under the normalized squared error loss

∑p
i=1(λ̂i − λi)2/λi.

Remark 3.1. Since the two estimators are the same outside C, the averaged loss of (δ1(x), . . . , δp(x)) over C is
smaller than or equal to that of X. Further, as stated in Chang and Shinozaki (2019), Lemma 3.1 is true even
when the inequality xi ≥ bi is replaced by xi > bi for some of p coordinates in the definition of C. We use this
Remark 3.1 in the subsection 3.2.4.

3.1 2× 3 table

Consider a 2 × 3 table whose components xij , i = 1, 2, j = 1, 2, 3 are independent Poisson random variables with
respective means λij . The multiplicative (independent) model is described as

λij = λpiqj , i = 1, 2, j = 1, 2, 3,

where λ =
∑2
i=1

∑3
j=1 λij and pi ≥ 0 and qj ≥ 0 satisfy p1 + p2 = 1 and q1 + q2 + q3 = 1, respectively. When

the model is true, the row ratio xi1j/xi2j (j = 1, 2, 3) is an estimator of pi1/pi2 , (i1, i2 = 1, 2) and the column
ratio xij1/xij2 (i = 1, 2) is an estimator of qj1/qj2 , (j1, j2 = 1, 2, 3). If we choose four xij

′s pertinently so that a
row ratio and two column ratios are determined, we obtain the estimated frequencies of the remaining two cells
under independence. In case when the observed frequency is larger than or equal to the estimated frequency for
the two cells, we shrink the two observed frequencies to their respective estimated frequencies. For any 2× 3 table
there are three ways to choose four xij

′s if we take notice of the numbers of four xij
′s which belong to respective

columns: col(2, 1, 1), col(1, 2, 1) and col(1, 1, 2). By col(y1, y2, y3)(yj ≥ 1, j = 1, 2, 3, y1 + y2 + y3 = 4) we mean the
case where yj elements are chosen from the j-th column so that a row ratio and two column ratios are determined.
Col(2, 1, 1). We first give a partition of the total set S = {X|xij ≥ 0, i = 1, 2, j = 1, 2, 3}, where X = {xij , i =
1, 2, j = 1, 2, 3}. For that purpose we first choose the two variables x11 and x21 in the first column and the row
ratio x11/x21 is determinated. Next we choose one variable each from the second and third columns. There are
four cases depending on whether x11/x21 ≥ x12/x22 or not and whether x11/x21 ≥ x13/x23 or not. Let the four
sets S`, ` = 1, 2, 3, 4 be defined as follows:

S1 = {X|x11/x21 ≥ x12/x22, x11/x21 ≥ x13/x23},
S2 = {X|x11/x21 ≥ x12/x22, x11/x21 < x13/x23},
S3 = {X|x11/x21 < x12/x22, x11/x21 ≥ x13/x23},
S4 = {X|x11/x21 < x12/x22, x11/x21 < x13/x23}.

Then S`, ` = 1, 2, 3, 4 are disjoint and
⋃4
`=1 S` is the total set S. Thus S`, ` = 1, 2, 3, 4 give a partition of S.

Consider the case where an observation X ∈ S4. We choose the variables x22 and x23 from the second and
third columns, respectively whenever X ∈ S4. Then the estimated frequencies of the (1, 2) and (1, 3) cells based
on x11, x21, x22 and x23 are given as

x̂12 = x22 × (x11/x21) and x̂13 = x23 × (x11/x21),

respectively and we have x12 > x̂12 and x13 > x̂13. Suppose that[
x11 x12 x13
x21 x22 x23

]
=

[
4 6 8
8 6 4

]
is observed. Then X ∈ S4 and, fixing x11 = 4, x21 = 8, x22 = 6, and x23 = 4, we have x̂12 = 3 and x̂13 = 2. Thus
we have an observation in the two dimensional set x12 > 3 and x13 > 2. We apply the estimator (3.1) with p = 2,
x1 = x12, x2 = x13, b1 = 3 and b2 = 2 and have the following estimator: When X ∈ S4

ψ
(1)
ij (X) =

 xij , (i, j) = (1, 1), (2, 1), (2, 2) and (2, 3),

xij −
a(xij − x̂ij)

(x12 − x̂12) + (x13 − x̂13) + d
, (i, j) = (1, 2) and (1, 3),
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where 0 < a ≤ 2 and d ≥ a/2. When X ∈ S`, ` = 1, 2, 3, ψ
(1)
ij (X) is similarly defined and the estimator for the case

col(2, 1, 1) is given as

Ψ(1)(X) = {ψ(1)
ij (X), i = 1, 2, j = 1, 2, 3}, X ∈ S.

We will show that the estimator improves upon the unbiased estimator generally in 3.2. In our numerical example,
putting a = 2− 1 = 1 and d = a/2 = 1/2, we have

Ψ(1)(X) =

[
4 5.684 7.368
8 6 4

]
.

Case (1,2,1). We choose x12 = 6 and x22 = 6 in the second column and the row ratio x12/x22 = 6/6 = 1 is
determined. Choosing x11 = 4 and x23 = 4 further, we have x21 = 8 > 4 = x̂21 and x13 = 8 > 4 = x̂13. Thus
we shrink (x21, x13) to (x̂21, x̂13) in our example. Generally we obtain the estimator in this way and denote it by

ψ
(2)
ij (X), as

ψ(2)(X) =

[
4 6 7.529

7.529 6 4

]
.

Case (1,1,2). We fix x13 = 8 and x23 = 4 in the third column and x11 = 4 and x12 = 6 further. Then we have
x21 = 8 > 2 = x̂21 and x22 = 6 > 3 = x̂22. We shrink (x21, x22) to (x̂21, x̂22) in our example. Generally we denote

the estimator by ψ
(3)
ij (X), as

ψ(3)(X) =

[
4 6 8

7.368 5.684 4

]
.

By averaging the three estimators we have

ψij(X) =
1

3

{
ψ
(1)
ij (X) + ψ

(2)
ij (X) + ψ

(3)
ij (X)

}
, i = 1, 2, j = 1, 2, 3,

which is expected to show more stable performance than ψ
(k)
ij (X) (k = 1, 2, 3) alone. It is easily seen that

Ψ(X) = {ψij(X), i = 1, 2, j = 1, 2, 3} gives an improvement upon X since each Ψ(k)(X) = {ψ(k)
ij (X), i = 1, 2, j =

1, 2, 3} (k = 1, 2, 3) improves upon X and the randomized estimator

λ̂ij(X) = ψ
(k)
ij (X), with probability

1

3
, k = 1, 2, 3, i = 1, 2, j = 1, 2, 3,

is improved upon by Ψ(X) because the loss function is convex. In our numerical example, by putting a = 2−1 = 1
and d = a/2 = 1/2, we have

Ψ(X) =

[
4 5.895 7.633

7.633 5.895 4

]
.

3.2 m× n table

Consider an m × n table whose (i, j)-th element is xij , i = 1, . . . ,m, j = 1, . . . , n , where xij
′s are independent

Poisson random variables with respective means λij . We denote the table by X = {xij , i = 1, . . . ,m, j = 1, . . . , n}.
In the independent (multiplicative) model

λij = λpiqj ,

where λ =
∑m
i=1

∑n
j=1 λij and pj ≥ 0 and qj ≥ 0 satisfy

∑m
i=1 pi = 1 and

∑n
j=1 qj = 1, respectively. We consider

shrinking the observed frequencies to the estimated frequencies under independence.

3.2.1 Connectedness

The row ratio xi1j/xi2j (j = 1, . . . , n) is an estimator of pi1/pi2 and the column ratio xij1/xij2 (i = 1, . . . ,m) is
the one of qj1/qj2 . If (m+ n− 1) xij

′s are fixed pertinently so that row ratios and column ratios are determined,
we obtain the estimated frequencies of the remaining (m − 1)(n − 1) cells which are suited to the pattern under
independence. We will obtain several sets of (m + n − 1) xij

′s for which the observed frequency is larger than or
equal to the estimated frequency for the remaining (m− 1)(n− 1) cells.

Let Z be a subset of X satisfying |Z| = m + n − 1 and let vi (yj) denote the number of elements of Z which
belong to the i-th row (j-th column) of X. Thus we have

m∑
i=1

vi =

n∑
j=1

yj = m+ n− 1.
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To define all row ratios based on Z, we first define the row ratio of the i1-th and i2-th rows by si1i2 = xi1j/xi2j
if xi1j , xi2j ∈ Z. Then we extend the definition based on the defined row ratios. For example, if m = n = 3 and
Z = {x11, x13, x21, x22, x32}, s12 and s23 are defined first. Then we set s13 = s12s23. Column ratios are similarly
defined. We notice that it is necessary that

vi > 0, i = 1, . . . ,m and yj > 0, j = 1, . . . , n (3.2)

for all row ratios and column ratios to be defined. However, even if the condition (3.2) is satisfied, all row
and column ratios are not necessarily well defined. Consider, for example, the case where m = n = 3 and
Z = {x11, x12, x21, x22, x33}. Third row (column) is isolated and row (column) ratios including it are not defined.
We need a further condition on Z.

Remark 3.2. Some xij
′s ∈ Z may be 0 in some cases. We set 0/0 = 1 so that sijsji = sii = 1 always holds. Thus

for any 0 < a < b we assume that 0/b < 0/a and a/0 < b/0.

We first introduce the following definitions of connectedness to define row and column ratios definitely.
Definition 3.1. (Connectedness of two elements of Z). Let Z be a subset of X.
1. xab ∈ Z and xcd ∈ Z are connected if a = c or b = d.
Further,
2. xab ∈ Z and xef ∈ Z are connected if xab and xcd are connected and xcd and xef are connected for some xcd ∈ Z .

Thus two elements of Z are connected if one is reachable from the other by way of two elements of Z which are
on the same row or column.
Definition 3.2. (Connectedness of Z). Let Z be a subset of X. Z is connected if any two elements of Z are
connected.

Let
M = {1, 2, . . . ,m}, and N = {1, 2, . . . , n}.

Then we have the following.

Proposition 3.1. Z is not connected if and only if there exist ∅ 6= Z1 ⊂ Z, ∅ 6= M1 ⊂ M and ∅ 6= N1 ⊂ N such
that

Z1 ⊂ {xij , i ∈M1, j ∈ N1} and Zc1 ⊂ {xij , i ∈M c
1 , j ∈ N c

1},
where Zc1 = Z \ Z1 6= ∅, M c

1 = M \M1 6= ∅, and N c
1 = N \N1 6= ∅.

3.2.2 Basis and protrusive basis

Now we introduce the following.

Definition 3.3. (Basis). Z ⊂ X is a basis of X if |Z| = m+ n− 1, vi > 0, i = 1, . . . ,m, yj > 0, j = 1, . . . , n and
Z is connected.

As we show in Proposition 3.2 below, if Z is a basis of X, all row and column ratios are determined. The following
lemma is useful to show Proposition 3.2 as well.

Lemma 3.2. Let Z be a basis of an m× n table X.

1) If xi0,j0 is the only element of the i0-th row which belongs to Z, then Z \ {xi0,j0} is a basis of the (m− 1)×n
table which we obtain by deleting the i0-th row from X.

2) If xi0,j0 is the only element of the j0-th column which belongs to Z, then Z\{xi0,j0} is a basis of the m×(n−1)
table which we obtain by deleting the j0-th column from X.

Proposition 3.2. If Z is a basis of X, all row and column ratios are uniquely determined by Z.

Note. From the argument where m = 2 in the following proof, we see that for the cases where m = 2 or n = 2 if
Z satisfies the condition

|Z| = m+ n− 1, vi > 0, i = 1, . . . ,m, yj > 0, j = 1, . . . , n, (3.3)

then Z is connected and thus is a basis of X.
Now we give a canonical form for a basis Z of an m× n table X when we focus on a specific row (or column)

and apply only interchanges of rows and columns. We obtain an expression of a row (columum) ratio by using the
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canonical form. The canonical form is shown in Table 3.1, where “O” means that the corresponding xij belongs
to Z. The columns j1, . . . , ja have at least two elements of Z, including the one in the first (originally i1-th) row.
Rβ , 1 ≤ β ≤ a, denotes the set of numbers of rows which have at least one element of Z which is reachable from
xi1jβ without passing through xi1jη , η 6= β. A detailed proof is given in Appendix 1. By applying this expression
to the transposed X and taking the transpose again, we also obtain a canonical form for a basis Z of X when we
focus on a specific column.

Table 3.1 A canonical form for a basis Z based on the i1-th row

j1 j2 · · · jβ · · · ja
i1 O O O O O · · · O

O O O
R1 O O

O
O

R2 O O
O O

...
. . .

O O
Rβ O O

O
...

. . .

O O O
Ra O

O

Based on the canonical form, we obtain an expression of the row ratio siki1 in terms of Z. We first see that
siki1 has the factor 1/xi1jγ if ik belongs to Rγ , 1 ≤ γ ≤ a. See Table 3.2 which essentially shows the canonical
form for a basis Z when we focus on the jγ-th column. We set i1 = i(1) and jγ = j(1). We also notice that there
exists unique xi(2)j(1) ∈ Z, i(2) ∈ Rγ from which each element of Z in the ik-th row is reachable without passing
through the other xij(1) ∈ Z, i 6= i(2) (Table 3.3). Thus we see that si(2)i(1) = xi(2)j(1)/xi(1)j(1) and our problem

has reduced to the one of obtaining an expression of siki(2) based on a smaller table X̃ in Table 3.3. We note that

the set of elements of X̃ which belong to Z form a basis of X̃ as is shown in Appendix 1 for the canonical form
when we focus on a row. We repeat the similar procedure and have the expression

siki1 = Πη

xi(η+1)j(η)

xi(η)j(η)
, (3.4)

where η denotes the step number. We may notice that siki1 is expressed in terms of all different xij ’s since
j(η), η = 1, 2, · · · , are all different. For the columun ratio tj`j1 , a similar expression is obtained. When a basis Z
of an m × n table X is given, row ratios sαβ , α, β = 1, . . . ,m and column ratios tγδ, γ, δ = 1, . . . , n are uniquely
determined. We may notice that sαβsβα = 1 for any α, β = 1, . . . ,m and tγδtδγ = 1 for any γ, δ = 1, . . . , n. Then
we define the following.

Definition 3.4. (Estimated frequency). Using any xab ∈ Z, the estimated frequency of the (i, j)-th cell of X
based on a basis Z is defined as

x̂ij = xabsiatjb, i = 1, . . . ,m, j = 1, . . . , n.

We note that x̂ij = xij if xij ∈ Z. Further, we see that the estimated frequency is independent of the choice of
xab ∈ Z since sαβsβγ = sαγ for any α, β, γ = 1, . . . ,m and tδεtεφ = tδφ for any δ, ε, φ = 1, . . . , n. Now we give the
following.
Definition 3.5. (Protrusive basis). Let Z be a basis of an m × n table X = {xij , i = 1, . . . ,m, j = 1, . . . , n}
and let x̂ij be the estimated frequency of the (i, j)-th cell of X based on Z. If xij ≥ x̂ij , i = 1, . . . ,m, j = 1, . . . , n,
then we say that Z gives a protrusive pattern of X. We also say that Z is a p-basis of X for simplicity.

We may notice here that a p-basis depends on the observed value of X, but a basis does not.
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Table 3.2 A canonical form for a basis Z based on the jγ-th column

jγ = j(1)
i1 = i(1) O

O O
O

O O
Rγ ik O O

O
O O

O O
O

Table 3.3 A canonical form for a basis Z based on the j(1)-th column

j(1)
i(1) O

O O
O

i(2) O O

ik O O ← X̃
O

O O
O O

O

3.2.3 Total number of protrusive bases

We begin by the following remark whose proof is clear and is omitted.

Remark 3.3. It can be easily verified that Lemma 3.2 is true even if the word “basis” is replaced by “basis which
gives a protrusive pattern of X”. Conversely, to look for a basis Z which gives a protrusive pattern of X and has
only one element in a row (k-th row, say) (a column (`-th column, say)) of X, we need to find a p-basis Z ′ of X ′

which we obtain by deleting the k-th row (`-th column) from X. Once a p-basis Z ′ of X ′ is obtained, we choose
an element in the k-th row (`-th column) as a member of Z if the resulting ski, i 6= k (t`j , j 6= `) is minimized. The
element is uniquely determined except for a tie. We give a method to treat a tie and will show that it enables us
to resolve a tie.

To resolve a tie, we need to make a rule to include the case A = B in A ≥ B or A ≤ B, where A and B are
functions of X = {xij , i = 1, . . . ,m, j = 1, . . . , n} such that A/B is a product of ratios of two xij ’s . We propose
the following two methods.
Method 1(based on row-first ordering)

xij ’s are lined up as x11, x12, . . . , x1n, x21, x22, . . . , x2n, . . . , xm1, xm2, . . . , xmn. Let Su(xi0j0) be the set of xij
which succeeds xi0j0 . If the inequality A > B is rewritten as xi0j0 > f(Su(xi0j0)) for some xi0j0 , then the case
A = B is included in A ≥ B, where f(Su(xi0j0)) is a function of xij ∈ Su(xi0j0).
Method 2(based on column-first ordering)

This is the same as Method 1 except that xij ’s are line up as x11, x21, . . . , xm1,
x12, x22, . . . , xm2, . . . , x1n, x2n, . . . , xmn.

Suppose that a basis Z of X is given and row ratios are determined. As an example let us consider the inequality
xad/xcd > sac. Since sac is expressed as

sac = Πη

xi(η+1)j(η)

xi(η)j(η)
,
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as shown in (3.4), we can easily see that xad/xcd > sac is rewritten as xi0j0 > f(Su(xi0j0)) or xi0j0 < f(Su(xi0j0))
for some xi0j0 . Thus the case xad/xcd = sac is included in xad/xcd ≥ sac or xad/xcd ≤ sac.

It will not seem that these methods are able to resolve all the ties, especially when the tie occurs among three
or more quantities. However, we will show specifically that these methods work well in our case. In this paper we
use Method 1 or 2 to determine whether the equality A = B is included in A ≥ B or A ≤ B. We use the notation
A � B when A ≥ B with the equality in the sense of Method 1 or 2. Now we show the following.

Proposition 3.3

(i) Let X be an m× (α+ 1) table and let X̃ be the m× α table obtained by deleting the j0-th (j0 = 1, . . . , α+ 1)

column from X, where α ≥ 1. Suppose that a p-basis Z̃ is given for X̃. Then an element xiaj0 of the j0-th

column of X is uniquely determined by Method 1 (or 2) so that Z̃ ∪ {xiaj0} is a p-basis of X.

(ii) Let X be an (α+ 1)× n table and let X̃ be the α× n table obtained by deleting the i0-th (i0 = 1, . . . , α+ 1)

row from X. Suppose that a p-basis Z̃ is given for X̃. Then an element xi0ja of the i0-th row of X is uniquely

determined by Method 1 (or 2) so that Z̃ ∪ {xi0ja} is a p-basis of X.

A proof is given in Appendix 2.

Remark 3.4 As for (i) of Proposition 3.3, if there exist columns of X̃ each of which has only element belonging

to Z̃, the columns do not contribute to determine the row ratios. Therefore, deleting the columns, we may assume
that all columns of X̃ have two or more elements which belong to Z̃. A similar remark also applies to (ii) of
Proposition 3.3.

Let Tm×n be the total number of bases which give protrusive patterns of an observed m×n table X. To discuss
Tm×n, we first need the following.

Definition 3.6. Let Z be a p-basis of an m× n table X.

(i) If the i-th row of X has vi elements belonging to Z, we say Z is a row(v1, v2, . . . , vm) p-basis, where vi ≥ 1, i =
1, . . . ,m and

∑m
i=1 vi = m+ n− 1.

(ii) If the j-th column of X has yj elements belonging to Z, we say Z is a col(y1, y2, . . . , yn) p-basis, where
yj ≥ 1, j = 1, . . . , n and

∑n
j=1 yj = m+ n− 1.

The existence of a row(v1, v2, . . . , vm) (col(y1, y2, . . . , yn)) p-basis is established by the following proposition
whose proof is given in Appendix 3.

Proposition 3.4. Let an m× n table X be observed.

(i) For any (v1, v2, . . . , vm) which satisfies vi ≥ 1, i = 1, . . . ,m and
∑m
i=1 vi = m+n−1, there exists a row(v1, v2, . . . , vm)

p-basis of X.

(ii) For any (y1, y2, . . . , yn) which satisfies yj ≥ 1, j = 1, . . . , n and
∑n
j=1 yj = m + n − 1, there exists a

col(y1, y2, . . . , yn) p-basis of X.

Now we have the following proposition whose proof is given in Appendix 4.

Proposition 3.5. Tm×n = m+n−2Cm−1 for any m,n ≥ 2.

To show the uniqueness of a row(v1, v2, . . . , vm) (col(y1, y2, . . . , yn)) p-basis, we need the following lemma whose
proof is given in Appendix 5.

Lemma 3.3. For any m,n ≥ 1, let

Tm,n = {(y1, . . . , yn)|yj ≥ 1, j = 1, . . . , n,

n∑
j=1

yj = m+ n− 1}.

Then |Tm,n| = m+n−2Cm−1.
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From Proposition 3.5 and Lemma 3.3, we see that Tm×n = |Tm,n|. Thus using Proposition 3.4 we have the
following.

Corollary 3.1 Let an m× n table X be observed.

(i) For any (v1, v2, . . . , vm) which satisfy vi ≥ 1, i = 1, . . . ,m and
∑m
i=1 vi = m + n − 1, there exists a unique

row(v1, v2, . . . , vm) p-basis of X.

(ii) For any (y1, y2, . . . , yn) which satisfy yj ≥ 1, j = 1, . . . , n and
∑n
j=1 yj = m + n − 1, there exists a unique

col(y1, y2, . . . , yn) p-basis of X.

3.2.4 A numerical algorithm and a shrinkage estimator

Here we describe a numerical algorithm for all protrusive bases and propose a shrinkage estimator which dominates
the unbiased estimator. It may be noticed that Method 1 or Method 2 is applied to resolve a tie.

Numerical algorithm. For a protrusive basis Z of an m×n table X, let Y = {y1, . . . , yn} be the set of numbers
of elements of Z in each column of X. Thus

yj > 0, j = 1, . . . , n and

n∑
j=1

yj = m+ n− 1.

We assume that m ≤ n without loss of generality. For the detail explanation of Qq×` =q−2 C`−1, q > ` ≥ 2, see
Appendix 4.

In case where m = 2 it is easy to obtain T2×n = nC1 = n p-bases since Y = {2, 1, . . . , 1}. Once the column
which gives the row ratio is determined, we need to examine which element should belong to Z for each of the
remaining columns.

In case where m = 3, we only have Y = {3, 1, . . . , 1} and {2, 2, 1, . . . , 1}. For Y = {3, 1, . . . , 1}, n p-bases are
easily obtained as in the case m = 2. For the case where Y = {2, 2, 1, . . . , 1}, we first determine a set of two
columns which should have two elements of Z each. Then we consider the problem of a 3× 2 table, which we can
treat easily as discussed in the proof of Proposition 3.5. Since Q3×2 = 1, we have n(n− 1)/2 p-bases for the case
where Y = {2, 2, 1, . . . , 1}.

In case where m = 4, we have Y = {4, 1, . . . , 1}, {3, 2, 1, . . . , 1} and {2, 2, 2, 1, . . . , 1}. We can treat the first and
second cases similarly as in the case m = 3 and have n+n(n−1) p-bases. For the case where Y = {2, 2, 2, 1, . . . , 1},
we first determine a set of three columns which should have two elements of Z each. Since Q4×3 = 1, a p-basis
exists uniquely for each set of three columns. However, in order to find the unique p-basis, we may have to examine
all T4×3 = 10 p-bases of the 4× 3 (or 3× 4) table. An algorithm described in Appendix 3 (especially Lemma A.2
and Appendix 3.1) will be helpful to get the col(2, 2, 2) p-basis of a 4 × 3 table. The col(2, 2, 2) p-basis will be
easily obtained if, for example, the col(3, 2, 1) p-basis is available.

We stop the discussion with brief comments on the case of 5× n table. In this case we have to treat the cases
Y = {3, 2, 2, 1, . . . , 1} and {2, 2, 2, 2, 1, . . . , 1}. For the case where Y = {3, 2, 2, 1, . . . , 1}, we may have to examine
all T5×3 = 15 p-bases in order to find Q5×3 = 3 p-bases. For the case where Y = {2, 2, 2, 2, 1, . . . , 1}, we may have
to examine all T5×4 = 35 p-bases in order to find Q5×4 = 1 p-basis. An algorithm described in Appendix 3 will be
helpful to get these p-bases
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