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Abstract

A branching process is a mathematical model of Erdos-Renyi random graphs. For a nor-
malized process, a martingale convergence theorem holds. However, its asymptotic distribution
has not been known so far. We propose a characterization of the distribution via analysis of a
functional equation for the Laplace transform of the distribution. It turns out that a numerical
analysis mostly coincides well with the theoretical characterization. Applications of the Branch-
ing process include a biological population, nuclear chain reactions, and the spread of computer
software viruses in common. Mathematical models of these applications play a central role in
figuring out the main process and predicting future extensions.

1 Background and Problem

Let X be a random variable (r.v.) taking nonnegative integer values N0 = {0, 1, 2, · · · } and let
ppp = {pk | k ∈ N0} be its distribution. Then, a branching process (BP) {Zn|n ∈ N0} is defined by

Zn =

Zn−1∑
i=0

Xn,i

where {Xn,i | i ∈ N0} is an iid sequence of r. v.s with Xn,i ∼ X for each n ∈ N0. That is, each of the
i-th individuals in (n− 1)-th generation produces Xn,i offspring according to the same distribution
ppp independently of each other, to form the n-th generation individuals. We assume that Z0 = 1.
In this case, Z1 ∼ X. Let P be the distribution of {Zn}. For the BP, the extinction probability
and the survival probability are defined by

η = P(∃n : Zn = 0) and

ζ = P(Zn > 0, ∀n ≥ 0) = 1− η,
(1.1)

respectively. When m = E[Z1] ≤ 1, the population dies out with extinction probability η = 1. If
m > 1, it is called supercritical. In the latter case, the extinction probability should be η < 1. Let
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Wn = Zn/m
n, n = 0, 1, 2, · · · . Then, {Wn} is known [2] to form a martingale and converges to a

random variable W∞ on R+ = [0,∞) a.s. as n → ∞. We should recall here a profound theorem of
Kesten-Stigum [2] in supercritical case that states P(W∞ = 0) = η and E[W∞] = 1 if and only if
E[X logX] < ∞. Thus, an exact correspondence holds for the asymptotic r. v. W∞.

However, not much is known about the distribution of W∞ so far [1]. The objective of the paper
is to characterize the distribution, by analyzing a functional equation that holds for the Laplace
transform of the distribution, given below.

2 Analysis of the Distribution

Let f : [0, 1] 7→ [0, 1] be the probability generating function of ppp : f(s) =
∑

k∈N0
pk s

k, s ∈ [0, 1].
W∞ is known to have a density function on (0,∞) [2, Corollary 12.1], which we denote by w :
(0,∞) 7→ R+, while W∞ has a point mass at the origin, P (W∞ = 0) = η [2, Theorem 6.2]. Thus,
we may write W∞ ∼ ηδ(x) + w(x) on x ∈ R+.

Let φ : R+ 7→ R+ be the Laplace transform of W∞,

φ0(u) = E[e−uW∞ ] =

∫
R+

e−uxw(x) dx = η + φ(u), φ(u) =

∫
(0,∞)

e−uxw(x) dx.(2.2)

For φ and f , the following functional equation, called Abel’s equation, is known to hold [2, Sections
1.6 and 1.10]:

(2.3) φ0(u) = f

(
φ0

( u

m

))
=

∑
k∈N0

pk φ
k
0

( u

m

)
, u ∈ R+.

Especially, taking u = 0 or ∞ in (2.3) corresponds in general to the two solutions of the equation
s = f(s) with s = 1 = φ0(0) or s = η = φ0(∞), respectively.

In this paper, we assume that the offspring distribution ppp is Poissonian, X ∼Pois(λ) for a λ > 1:

pk =
λk

k!
e−λ. Then, taking especially m = λ in (2.3), the Abel’s equation reads

(2.4) φ0(u) = exp
[
λ
{
φ0

( u

λ

)
− 1

}]
, u ∈ R+,

or, what is the same,

(2.5) φ(u) + η = exp
[
λ
{
φ
( u

λ

)
− ζ

}]
, u ∈ R+.

Thus, we characterize the distribution w(x) that satisfies the Poisson-Abel equation (2.5), in this
paper.

Taking the differentiation of (2.5), we have

(2.6) φ′(u) = φ′
( u

λ

)(
φ(u) + η

)
.
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In the McLaurin expansion1 of φ(u), φ(u) =
∑
n∈N0

φ(n)(0)

n!
un, we calculate φ(n)(0), n ∈ N through

(2.6):

φ(n)(u) =
(
φ′(u)

)(n−1)
=

{
φ′
( u

λ

)(
φ(u) + η

)}(n−1)

= λ−(n−1)φ(n)
( u

λ

)(
φ(u) + η

)
+

n−1∑
l=1

(
n− 1

l

)
λ−(n−1−l)φ(n−l)

( u

λ

)
φ(l)(u)

(2.7)

by Leibniz’s formula, so that, taking u = 0 especially,

(2.8)
(
1− λ−(n−1)

)
φ(n)(0) =

n−1∑
l=1

(
n− 1

l

)
λ−(n−1−l)φ(n−l)(0)φ(l)(0),

since 1 = φ0(0) = η + φ(0) by (2.2). Here, let us introduce

(2.9) ρ ≜ − λ

λ− 1
φ′(0) =

λ

λ− 1
E[W∞ ] =

λ

λ− 1
,

where we have used E[W∞ ] = 1 (see [2, Theorem I.6.2]). Then, upon calculating φ(n)(0), n ∈ N
recursively according to (2.8), it turns out that we can write

φ(n)(0) = Kn (−ρ)n−1, n ∈ N(2.10)

for appropriate functions Kn = Kn(λ). For example,

(2.11) K1 = K2 = 1 and K3 =
λ+ 2

λ+ 1
.

Applying (2.10) to the right hand side of (2.8), we have

φ(n)(0) =
1

1− λ−(n−1)

n−1∑
l=1

(
n− 1

l

)
λ−(n−1−l)Kn−l(λ)(−ρ)n−l−1Kl(λ)(−ρ)l−1

= ρ

[
1

1 + 1
λ + · · ·+ ( 1λ)

n−2

n−1∑
l=1

(
n− 1

l

)
λ−(n−1−l)Kn−l(λ)Kl(λ)

]
(−ρ)n−2

= −Kn (−ρ)n−1.

(2.12)

1We are presently assuming that the McLaurin expansion is valid on an interval of certain radius of convergence.
This seems to be valid from simulation an we are to prove it later.
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Thus, for the evaluation of φ(n)(0), the evaluation of Kn is necessary.

We write 1 + 1
λ + · · · + ( 1λ)

n−2 ≜ ρn−1 below. We note that ρn −→ ρ. Through the recursive
relation

Kn =
1

ρn−1

n−1∑
l=1

(
n− 1

l

)
λ−(n−1−l)Kn−l(λ)Kl(λ)

=
(n− 1)!

ρn−1

n−1∑
l=1

λ−(n−1−l) Kn−l(λ)

(n− l)!
· Kl(λ)

l!
· (n− l),(2.13)

we will find a simple approximation function of Kn as follows:

(2.14) Kl = 1 +
[
λ(λ+ 1)

]−(al+b)
l! + εl, l ≦ n− 1.

We then show that the model equation (2.14) actually holds for the resulting Kn as well, below.
First, applying (2.14), we can write

Kn−l

(n− l)!
· Kl

l!
=

1 + (2λ)−a(n−l)−b(n− l)! + ε

(n− l)!
· 1 + (2λ)−(al+b)l! + ε

l!

=
1 + ε

(n− l)!
· 1 + ε

l!
+

1 + ε

l!

[
λ(λ+ 1)

]−a(n−l)−b

+
1 + ε

(n− l)!

[
λ(λ+ 1)

]−(al+b)
+
[
λ(λ+ 1)

]−an−2b

≜ L
(1)
n,l + L

(2)
n,l + L

(3)
n,l + L

(4)
n,l .

Inserting these four terms into (2.13) and writing L(i)
n =

n−1∑
l=1

λ−(n−1−l) L
(i)
n,l · (n− l), we have

L(1)
n = (1 + ε)2 · 1

ρn−1

n−1∑
l=1

(
n− 1

l

)
λ−(n−1−l) ≃ (1 + ε)2 · 1

ρ

(
1 +

1

λ

)n−1
,

L(2)
n = (1 + ε) · (n− 1)!

ρn−1

n−1∑
l=1

λ−(n−1−l)

[
λ(λ+ 1)

]−a(n−l)−b

l!
· (n− l)

≃ (1 + ε) · C 1

ρ

[
λ(λ+ 1)

]−an−b
n! ,
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L(3)
n = (1 + ε) · (n− 1)!

ρn−1

n−1∑
l=1

λ−(n−1−l)

[
λ(λ+ 1)

]−al−b

(n− l)!
· (n− l)

≃ (1 + ε) · C 1

ρ

[
λ(λ+ 1)

]−an−b
(n− 1)!,

L(4)
n = (1 + ε) · (n− 1)!

ρn−1

n−1∑
l=1

λ−(n−1−l)
[
λ(λ+ 1)

]−an−2b · (n− l)

≃ ρ
[
λ(λ+ 1)

]−an−2b
(n− 1)!.

Therefore, it turns out that the recursive expression is a device that reproduces Kn with asymp-
totically the same form as (2.14):

(2.15) Kn = 1 +
[
λ(λ+ 1)

]−(an+b)
n! ·

(
1 +O(n−1)

)
, as n → ∞.

Applying the expression (2.15) to (2.12), we have

φ(u) =
∑
n∈N0

φ(n)(0)

n!
un =

1

ρ

∑
n∈N0

Kn

n!
(−ρu)n

≃ 1

ρ

∑
n∈N0

1 +
[
λ(λ+ 1)

]−(an+b)
n!

n!
(−ρu)n ;

Especially, the main term results in

1

ρ

[
λ(λ+ 1)

]−b
∑
n∈N0

(
− ρ

[
λ(λ+ 1)

]−a
u
)n

=
1

ρ2
[
λ(λ+ 1)

]a−b · 1

u+ ρ−1
[
λ(λ+ 1)

]a .

Therefore, by the inverse Laplace transform, w(x) has the main component of the probability
density function given by

1

ρ2
[
λ(λ+ 1)

]a−b
exp

(
−
[
λ(λ+ 1)

]a
u
)
.

We use the following propositions to evaluate Kn:
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Proposition 1. The functions Kn−l(λ)Kl(λ) are non-decreasing with respect to l = 1, · · · , ⌊n/2⌋:

(2.16) Kn−1(λ)K1(λ) ≧ Kn−2(λ)K2(λ) ≧ · · · ≧ K⌈n/2⌉(λ)K⌊n/2⌋(λ) for λ ≧ 1,

for each n = 3, 4, · · · ·. Especially,

(2.17) Kn−l(λ)Kl(λ) ≦ Kn−1(λ)K1(λ), for λ ≧ 1.

In Figure 1,
{
Kn−l(λ)Kl(λ)

}
are plotted for n = 9 and 10. It presents that (2.16) is indeed

true.

Proposition 2.

(2.18) 1 +
(n− 2)(n− 1)

2(λ+ 1)
≦ Kn(λ) ≦ 1 +

2−(n−1)n!

λ+ 1

Figures. Some related graphics are plotted in here.

Figure 1: The graphs of Kn−l(λ)Kl(λ) for 1: a. n = 9, b. n = 10.
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Figure 2: A graph of an upper and lower limit of the function K10(λ).

Figure 3: a. The function Kn(λ), its relation and values of an equation θ = an+ b. b. Asymptotic
linearity of θ = an+ b in some fixed λ.
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Appendix. Here, we list some of Kn. The larger the n, the more complicated the expressions
become soon.

K1(λ) = K2(λ) = 1,

K3(λ) =
λ+ 2

λ+ 1

K4(λ) =
λ3 + 5λ2 + 6λ+ 6

(λ+ 1)(λ2 + λ+ 1)

K5(λ) =
λ6 + 9λ5 + 24λ4 + 40λ3 + 46λ2 + 36λ+ 24

(λ+ 1)2(λ2 + 1)(λ2 + λ+ 1)

K6(λ) =
λ10 + 14λ9 + 64λ8 + 160λ7 + 301λ6 + 416λ5 + 514λ4 + 480λ3 + 390λ2 + 240λ+ 120

(λ+ 1)2(λ2 + 1)(λ2 + λ+ 1)(λ4 + λ3 + λ2 + λ+ 1)
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