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First Success of Cancer Genetic Analysis by Microarrays
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Abstract - Specification of cancer genes using microarrays has
been done since 1970. Six prominent US projects published
papers and released their microarrays. Statisticians considered
cancer gene analysis as a new research theme because
microarrays are high-quality and high-dimensional data.
However, they could not succeed because the discriminant
analysis was not helpful. We found that six microarrays are
linearly separable data by Revised IP-OLDF. In addition,
microarrays could easily be decomposed from 64 pairs to 179
pairs of small genes less than n patients. Furthermore, we found
many malignancy indexes and opened the possibility of the
genetic diagnosis of cancer. Many researchers believe that
useful information cannot be obtained from microarrays.
Genetic analysis of cancer was unsuccessful because the
statistical discriminant analysis was useless. On the other hand,
our new theory of discriminant analysis could solve this theme
completely. In this paper, we explain these reasons by the many
empirical studies.

Keywords: Linearly Separable Data (LSD); Matryoshka
feature selection method (Method2); Small Matryoshka (SM);
Revised IP-OLDF (RIP); Gene Analysis; Gene Diagnosis.

1 Introduction

Although we developed a diagnostic logic of ECG data
by Fisher’s linear discriminant function (LDF) [8] and
quadratic discriminant function (QDF), our research was
inferior to the decision tree logic developed by the medical
doctor in 1974 because ECG data did not satisfy Fisher’s
assumption. This is our motivation to develop the new theory
of discriminant analysis. After many experiences of the
discriminant analysis, we found two facts and five severe
problems on discriminant analysis [18-20] [23]. We developed
four optimal LDFs (OLDFs) [17] and the 100-fold cross-
validation for small samples (Methodl) [21] that solved five
problems completely. Section 2 explains the new theory of
discriminant analysis after R. Fisher (Theory) [35]. Section 3
explains the cancer gene analysis (Problem5) and the
Matryoshka feature selection method (Method2) [32] [36].
Although many medical and statistical researchers studied to
specify cancer genes from microarrays, they could not succeed.
However, Revised IP-OLDF (RIP) based on the minimum
number of misclassifications (minimum NM, MNM) and
Method2 could decompose six microarrays into small plural
subspaces (Small Matryoshkas, SMs) and the noise subspace.

All MNMs of SMs are zero and signals. MNM of noise
subspace is over than one. Thus, we can define the definition
of signal and noise clearly. Section 4 explains the cancer gene
diagnosis by malignancy indexes and RatioSV [37]. Section 5
is the conclusion.

2 New Theory of Discriminant Analysis

2.1 Fisher’s LDF

Fisher defined Fisher's LDF by Fisher’s assumption and
developed the theory of discriminant analysis. The
discriminant analysis becomes an important statistical method
as same as the regression analysis. However, since there is no
proper test for Fisher’s assumption, Fisher’s LDF is applied for
many applications that do not satisfy Fisher's assumption.
Moreover, statisticians ignored many problems of the
discriminant analysis and developed many discriminant
functions based on the variance-covariance matrices those
were useless for linearly separable data (LSD). The fact that
these discriminate functions could not discriminate LSD
correctly was the serious problem (Problem?2). Considering the
two groups as a Gaussian distribution of f; =¢ (- (x - m)?/
2s%) / (SQRT (2 & *s?) for i=1,2, the logarithm of these ratio
becomes the following linear equation (1). We think that Fisher
defined (1) by the feature of the exponential function.

log(fi/fy) = log [ e {-(x-m;)*/2s>+(x-my)%/2 s?}]
= (m; - mp)/s2*x + (m2m2)/(2*%s?) (1)

Nowadays, most researchers misunderstand that Fisher’s
LDF was obtained by maximizing the correlation ratio and
partial differential obtains this optimal solution. Statistical
researchers and users are the most distant from mathematical
programming (MP). Fisher easily constructed the discriminant
theory in the era without the computational environment by
avoiding the optimum solution obtained by partial differential
according to the actual data. Fisher also developed the
maximum likelihood estimation method that was used for the
logistic regression [5] [7]. In addition, he or the same
generation of researchers developed QDF. If actual data does
not satisfy Fisher's assumption, they recommended using QDF.
We must study the flexible correspondence and wisdom of the
predecessor. He never found Fisher's LDF that matches the data
by maximum likelihood estimation. When assuming a
multidimensional normal distribution, statistical LDFs can be
easily obtained simply by obtaining the variance-covariance
matrices of the p variable. For these reasons, both statisticians



and statistical users were relieved from the troublesomeness
without knowing the difference between the maximum/
minimum values and the local maximum/local minimum
values and enjoyed the advantage compared with MP theory.
Six microarrays are LSD, NM of those are MNM=0. However,
the maximization criterion of the correlation ratio cannot
correctly distinguish the LSD. We had already show we could
not determine the pass or failure of the examinations using
exam scores because the error rates were very high (Problem?).
Therefore, it is quite useless for genetic analysis of cancer. This
is because discriminant theory did not study discrimination of
LSD at all. Thus, biostatisticians and gene specialists could not
solve Problem5 from 1970.

2.2 Summary of New Theory

2.2.1 Two New Facts found by IP-OLDF and MNM

We established the Theory in 2015 that consists four
OLDFs and two methods such as the Method1l and Method?2.
Although there are five severe problems of discriminant
analysis, Theory can solve five problems completely. In 1997,
the definition of IP-OLDF using integer programming (IP)
found two new facts of discriminant analysis as follows:

1) The definition of IP-OLDF reveals the relation of NM and
LDF on the discriminant coefficient space. This fact explained
the defect of NM clearly (Problem1). Moreover, only RIP can
find correct NM, NM of which is MNM. All NMs of other
LDFs may not be right and increase.

2) The MNM decreases monotonously (MNMy >= MNM1)).
If data are LSD and MNM = 0, all MNMs of models including
these k-variables are zero [33]. This fact means that “MNM
monotonic decrease” means the Matryoshka structure of LSD
and microarrays. LSD includes many small subspaces (SMs),
MNDMs of those are zero. We call all linearly separable space
and its subspaces as Matryoshka. Swiss banknote data [9] [34]
consist of six variables and 200 banknote bills (n > p). When
we discriminate all possible models [12], we found MNM of
the two-variable model (X4, X6) was zero. This is the smallest
SM (Basic Gene Set, BGS) in gene analysis. Thus, we can find
16 SMs in this data by the monotonic decrease of MNM. Other
47 models are not Matryoshkas, MNMs of which are over one.
Since IP defines RIP and linear programming (LP) defines
Revised LP-OLDF, both OLDFs find the vertex of a convex
polyhedron (feasible region) made by p-constraints out of n-
constraints made by p-variables.

2.2.2 MP-based LDFs

IP defines RIP in (2). If e; is non-negative real variable, Eq.
(2) changes Revised LP-OLDF that is solved by LP. Revised
IPLP-OLDF is a mixture model of Revised LP-OLDF in the
first phase and RIP in the second phase. Feasible region is
defined by constraints and is the convex polyhedron. LP
optimal solution is one of the endpoints of the feasible region.
In the case of small samples (n>p), it is a solution of at most p
constraints selected from n constraints. In the case of

microarrays (n<<p), it is a solution of at most n constraints by
setting (p — n) coefficients zeros.
MIN =X¢;i; yi* (xb+by)>=1-M*ei; 2)
bo: free decision variable.
b: p-coefficients.
e; : 0/1 integer variable
yi: -1 for class1, 1 for class2
M: 10,000 (Big M constant)

MIN = ||b|*2; yi* ('xib +bo) >=1; 3)
ei: non-negative real value.
MIN=||b|]*/2+c*Ze;; (4)

Yi* ( x;b + bo) >=1-M*g;;
c: penalty ¢ to combine two objectives.

The equation (3) is a hard margin SVM (H-SVM) [43] that
explains  LSD-discrimination  firstly. The  quadratic
programming (QP) defines SVMs. Before H-SVM, nobody can
define whether data is LSD or overlap. Moreover, the most
researcher believes LSD-discrimination is easy. Now, LSD is
defined by “MNM=0,” and overlap data is “MNM>=1" clearly.
Thus, no researchers could define LSD clearly before H-SVM
and MNM. However, H-SVM causes the computation error for
the overlap data. This fact may be the reason why nobody
discriminates microarrays or study LSD-discrimination.

The equation (4) is soft-margin SVM (S-SVM). If we set
c=10* or c=1, it becomes SVM4 or SVM1. We compare SVM4
and SVMI1 because there is no research to choose the proper c.
By the results of best models [34], the best models of SVM4
are almost better than SVM1. If we omit “||b||?/2 and ¢=1", it
becomes Revised LP-OLDF that can find SMs. However, S-
SVM cannot find SM.

Even though Revised LP-OLDF can find SMs, three SVMs
cannot select SM. This difference is caused by QP that looks
for the one minimum solution on the gene space and cannot find
one of the minimum solutions on the gene subspaces. This fact
indicates QP prevent to find SM.

2.2.3  Five Problems of Discriminant Analysis

The only RIP based on the MNM criterion can
discriminate the cases on the discriminant hyper-plane
theoretically. Because other LDFs may not be able to
discriminate these cases correctly, pure NMs of these LDFs
may increase (Probleml). Although NM is the vital statistic of
the discriminant analysis, no statisticians recognize the defect
of NM. Thus, even though we developed MNM instead of NM,
some journal rejected our paper for the reason that MNM
criterion was a foolish idea. Since Fisher never proposed the
standard errors of error rate and discriminant coefficients, the
discriminant analysis was not the traditional inferential
statistics (Problem4). Thus, we proposed the Methodl that
offered the 95% confidence interval of coefficients and error
rates [22]. Moreover, we proposed the model selection method
such as the best model with a minimum mean of error rate in
the validation samples (M2) instead of a leave-one-out method
[14]. The best model is the M2 obtained by the 100 validation
samples among all possible models. The best models of RIP
almost have minimum M2s among eight LDFs using six
different types of common data such as Swiss banknote data,



Fisher’s iris data, student data, Cephalo Pelvic Disproportion
data, many pass/fail determinations of exam scores, Japanese
44 cars data. Seven LDFs are two OLDFs, three SVMs, logistic
regression and Fisher’s LDF. The best models of Fisher’s LDF
were worst, except for Fisher’s iris data. This fact indicates
MNM is robust statistics instead of NM. RIP and H-SVM can
discriminate LSD theoretically (Problem2). Although the
pass/fail determination using examination scores are LSD,
error rates of Fisher’s LDF and QDF are very high [24]. This
fact indicates the statistical discriminant functions based on the
variance-covariance matrices are useless for LSD-
discrimination such as microarrays. However, only logistic
regression can discriminate all SMs empirically because it is
solved by the maximum likelihood. Therefore, we consider
Cox models and logistic regression open the new second
frontier of the discriminant analysis. We found the defect of
generalized inverse matrices of variance-covariance matrices
(Problem3). At first, JMP [15] QDF misclassified all students
of the passed class to the failed class if some variable of the
passed class is constant. This is a disadvantage of traditional
statistics that all data seems to be different. We solved this
problem to add a small random number to the constant variable.
We spent three years to solve Problem3 because our approach
was wrong as same as the cancer gene analysis that could not
solve from 1970. Although many researchers were struggling
for Problem5, we solved it within 54 days in 2015 by MP-based
LDFs instead of statistical discriminant analysis.

3 Cancer Gene Analysis by Method2
3.1 All SMs of Six Microarrays

Jeffery, Higgins, and Culhane upload six microarrays
used by six prominent US medical researchers and propose ten
feature selection methods [13]. To the best of our knowledge,
there are no papers to point out six microarrays are LSD
definitely. LSD has the Matryoshka structure that includes SMs
in it. Table 1 shows six microarrays used in six papers
published from 1999 to 2004. It shows the summary obtained
by LINGO Program3 in 2015 [16]. “Description” shows two
classes. Singh et al. microarray [38] [41] consist the 50 healthy
subjects (class 1) and the 52 tumor patients (class 2). “Size” are
the number of case and gene. “SM: Gene” are the number of
SM and the total number of genes included in all SMs. “JMP12”
are NM of Fisher’s LDF. Six NMs are 5, 3, 8, 3, 10 and 29.
Error rates in the parenthesis are 8, 2, 11, 4, 10 and 17%,
respectively. Especially, Tian error rate is very large. Although
JMP enhances Fisher’s LDF for microarrays (JMP verl2,
JMP12) [15], this fact indicates that discriminant functions
based on variance-covariance matrices are useless for
Problem5. Whether or not LSD can be accurately discriminated
is the first step in cancer gene analysis. Whether the
discriminant coefficient can be 0 or not is the second barrier
important for the genetic diagnosis of cancer. If researchers
discriminated microarrays by H-SVM, they could find
microarrays were LSD. However, there was no research that

microarrays were LSD definitely. It is unbelievable why
researchers could not find this important fact.
Table 1. Summary of six Microarrays by Method?2

Data Description Size SM:Gene JMP12
Alone Normal (22) vs. 62 * 64 : 5
etal. [1] | tumor cancer (40) 2000 1152 [28] ®)
Chiaretti | B-cell (95) vs. 128* 270: 3

etal.[4] | T-cell (33) 12625 5385 [31] 2)
Golub All (47) vs. 72% 69: 8
etal.[11] | AML (25) 7129 1238 [27] (11)
Shipp Follicular lymphoma(19) 77* 213: 3
et al[40] | vs. DLBCL (58) 7129 3032 [26] )
Singh Normal (50) vs. 102 * 179: 10
etal[41] | tumor prostate (52) 12625 11387 [38] (10)
Tian False (36) vs. 173 * 159: 29 (17)
et al[42] | True (137) 12625 7221 [30]

When we discriminated Shipp et al. microarray [25] on
Oct. 28, 2015, only 32 RIP coefficients were not zero. Since
MNM of 32 genes is zero, these genes are oncogenes. Those
discriminated two classes completely. We misunderstand the
discrimination having 7,129 variables requests huge CPU time.
However, Fisher’s LDF by JMP12 and other six MP-based
LDFs coded by LINGO can solve microarrays less than 20
seconds because those are LSD. However, most coefficients of
SVMs are not zero. Thus, SVMs are useless for feature
selection of gene analysis. If BGS has k-variables, the biggest
Matryoshka with 7,129 variables includes much smaller
Matryoshka from 7,128 (= 7,129 - 1) variables to k variables.
LINGO Program3 can decompose microarrays into plural SMs
with hi-variables (p > h; >= k) and another high-dimension
noise gene subspace with “MNM >= 1.” If LINGO Program4
can find all list of BGSs quickly, we can understand the
Matryoshka structure of microarrays by these BGSs
completely. Because we can analyze each SM using standard
statistical methods, we expect to obtain new facts of gene
diagnosis and hope many researchers try to analyze these SMs.
By our breakthrough, the cancer gene analysis becomes an
interesting theme.

3.2 Three Difficulties or Excuses

From 1970 [11], many statisticians could not succeed to
specify oncogenes from microarrays (Problem5). They claimed
three difficulties or excuses. These difficulties are merely
excuses caused by a narrow world of statistics. They could not
understand that only discriminant functions suffered these
difficulties. MP-based LDFs are free from these difficulties.
Fisher's LDF explains why.

1) It was difficult to obtain the variance-covariance matrix
for small n large p data [6]. However, with singular value
decomposition JMP developed Fisher's LDF which can
distinguish microarray. However, six NMs are not zero.
Since the correlation ratio maximization criterion cannot
correctly distinguish LSD, it is entirely useless for gene
analysis. For MP-based LDFs, "Small n large p" is easier
to analyze than "large n small p" from the computation
time.



2) NP-hard to select gene feature [3]. Since statistical
discriminant functions and SVMs find only one optimal
functions on the whole domain, these functions must compute
all possible models to find SMs.

3) It is difficult to separate signal and noise. Because there
is no precise definition of the signal, signal and noise cannot be
appropriately separated. In our study, we defined the set of
genes with MNM = 0 as the signal.

Fisher's LDF is useless for gene analysis because NMs of
six microarrays are not zero. Fisher's assumption, variance-
covariance matrix and correlation ratio maximization cannot
theoretically discriminate LSD. Although regularized
discriminant analysis [10] and LASSO [2] are mainstream of
discriminant analysis after R. Fisher, those cannot discriminate
LSD theoretically. This is because they disregarded Fisher's
consideration, ignored reality data, and used normal
distribution as the starting point of the theory not based on
MNM criterion. "Lotus eating" brings unfortunate results.

3.3 The reason why LP and IP can find SMs

Microarrays are high dimensional data that is called as
small n and large p data (n<<p). In this case, RIP and Revised
LP-OLDF find the vertex of a convex polyhedron (feasible
region) made by n-constraints having p-variables. One of the
apexes of the feasible region is a solution of n simultaneous
equations, and it is obtained by setting (p - n) genes to 0. Thus,
LP and IP can find one of the subspaces (SMs) as the optimal
solution. This means only p; (p1 <= n) discriminant coefficients
of both OLDFs are not zero and other coefficients become zero.
Since six microarrays are LSD, RIP and Revised LP-OLDF can
find SM with less than n genes because of n<<p. This fact is
the reason why RIP could solve Problem5 54 days from
October 28 to December 20 in 2015.

On the other hand, NMs of H-SVM and Soft-margin SVM
(S-SVM) are zero, and most coefficients are not zeros. Thus,
these SVMs are useless for gene diagnosis. QP defines three
SVMs and finds only one optimal solution on the whole region
as same as statistical discriminant functions. In order to find
SMs, these SVMs need to compute all possible models. This
computation is NP-hard. This claim is our final conclusion [39].

4. Cancer Gene Diagnosis by RatioSV
4.1 Analysis of all SMs

Since all SMs were small samples with n; subjects
and k;j genes and all k; are less than n;, we expected the standard
statistical methods analyzed all SMs and could show good
results for cancer gene diagnosis. Those statistical methods are
one-way ANOVA, t-test, cluster analysis, principal component
analysis (PCA), logistic regression, Fisher’s LDF and QDF.
Since all NMs of logistic regression were zero, logistic
regression confirmed all SMs were LSD. However, Fisher’s
LDF and QDF could not discriminate all SMs correctly.
Moreover, other methods did not show the linearly separable
signs that two classes were utterly separable in each SM. At first,
we expected “medical specialists will be able to find useful

meanings from these results.” However, we concluded these
results had no useful meanings at all.

4.2 RIP discriminant scores and RatioSV

We could not obtain useful results of all SMs by standard
statistical methods, except for logistic regression. Next, we
discriminate all SMs by the RIP and obtain RIP discriminant
scores (RipDSs). Since Singh et al. microarray is decomposed
179 SMs, we get 179 RipDSs from 179 SMs. Table 2 is the
summary of 179 RipDSs that is sorted in descending order of
RatioSV in (5). RatioSV is the second important statistic for
LSD in addition to MNM.

RatioSV = SV distance *100/ the range of RipDS

= 200/RDS (%) )
Table 2. 179 RipDSs of Singh Microarray

RIP Min Max | MIN MAX | RDS RatioSV | t(#)
RIP2 -8.58 -1 1 8.56 17.14 1167 | 14.57
RIP179 | -266.57 -1 1 44043 | 706.99 0.28 5.78
MAX -8.22 -1 1 44043 | 706.99 11.67 15.5
MEAN -33.94 -1 1 47.47 81.41 3.59 | 10.85
MIN -266.57 -1 1 8.56 17.14 0.28 5.78

The “Min and Max” columns are the range of the 50 healthy
subjects. “MIN and MAX” columns are the range of the 52
tumor patients. The 50 healthy subjects are less than equal -1,
and the 52 tumor patients are higher than equal 1. SV separates
102 subjects correctly. The sixth column is the range of DS
(RDS). The seventh column is RatioSV. Because the distance
of SV is two, this statistic is the ratio of SV’s width to RDS (%).
We expect this statistic indicates the degree of separation of the
two classes and malignancy index of a cancer gene diagnosis.
The last column is the t-values under the condition that both
variances are not equal. Since this t-test checks the difference
between two averages on DS, all values are positive. However,
if we check all t-values of each gene included in each SM, those
values are either of negative, almost zero and positive values.
Therefore, although some studies claimed genes with large
positive t-values were the oncogene, those claims were not right.
Although we cannot explain the meaning of genes with almost
zero, these genes are needed for diagnosis.

RatioSV is good statistics for LSD-discrimination because
it gives us the degree that SV separate two classes. We can
understand RatioSV of SM2 by RIP (RIP2) can discriminate
two classes very easy, and SV of RIP179 scarcely separates two
classes because its RDS is 706.99 and very large. The last three
rows are the maximum, mean and minimum of seven variables.
The range of RDS, RatioSV and t-value are [17.14, 706.99],
[0.28%, 11.67%] and [5.78, 15.5], respectively. “RatioSV”
recommends RIP2 because it is the maximum value among 179
RIPs. The range of RIP2 is [-8.58, 8.56] and its width is 17.14
(RDS). We focus on RIP2 of SM2. We think RatioSV is vital
statistics for the LSD-discrimination. In SM2, SV of RIP2 can
divide two classes completely by 11.67% width against RDS.
On the other hand, SM179 has a minimum value of RatioSV;
that is 0.28%. Therefore, the RIP179 may not discriminate the



validation samples correctly. Until now, there is no research on
LSD-discrimination. MNM is the first important statistics
because it defines LSD by MNM=0 and overlapping data by
“MNM>=1" clearly. Some statisticians claim the purpose of
discrimination is to discriminate the overlapping data, not LSD.
However, they cannot define the overlapping data definitely
because they did not have a technical term such as MNM. NM
cannot judge the data are overlapping or not. Since RatioSV
shows the ease of classification of the two classes, it is another
important statistic of cancer gene analysis and diagnosis.

4.3 New Data made by RipDSs

Since we could not obtain the useful results of SMs by
standard statistical methods, we make new data with n; subjects
and all RipDSs as variables instead of genes. By this
breakthrough, six new data made by microarrays have almost
the same marvelous results [37].

4.3.1 Ward Cluster Analysis

Many researchers analyzed microarrays by cluster
analysis. However, if we analyze 179 RipDSs data of Singh, the
Ward cluster separates two classes as two clusters clearly, and
both dendrograms of case and variable may be meaningful in
Figure 1. The 102 subjects become six clusters. Upper three
clusters belong to classl and lower three clusters belong to
class2 clearly. We expect the medical gene specialist will
explain the medical meaning of our statistical results. We are
willing to offer the more precise results. It is critical that both
cluster analysis and PCA of other five microarrays have almost
the same results as Singh et al.

4.3.2 PCA

Figure 2 is three plots of PCA. Left eigenvalue shows the
first eigenvalue is 113.7 and its cumulative ratio is 63.5%. The
second eigenvalue is 4.39, and its cumulative ratio is 2.45%.
Moreover, other 178 eigenvalues share 36.5%, and 72 subjects
almost vary on the first principal axis (Prinl). Middle scatter
plot shows two classes are completely separable and scatter on
the Prinl. Healthy subjects almost locate on minus Prinl.
Tumor patients scatter on the first and fourth quadrants that
look like a fan. Right factor loading plot locates on the first and
fourth quadrants. The 179 correlations of Prinl and 179 RipDSs
are over 0.7. The 179 correlations range of Prin2 and 179
RipDSs are [-0.4, 0.5]. Therefore, Prinl may be useful for the
malignancy index of cancer. The ranges of tumor patients and
healthy subjects are [0.99, 22.53] and [-17.89, -4.81],
respectively. RDS is [-17.89, 22.53]. Thus, RatioSV of PCA =
(0.99 +4.81) * 100 / 40.42 = 14.3%. Because RatioSV of SM2
is 11.67 %, the Prinl is more reliable than the discrimination of
SM2 because the Prinl is the total judgment result of 179 RIPs.
Only RatioSV of PCA by Golub is smaller than its maximum
RatioSV of individual RipDS.

Figure 1. The Heat Map and Dendrogram of New Data
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Figure 3. Three Plots of Transposed Data

We transpose the new data and analyze the transpose data
with 179 RipDSs (179 cases) and 102 subjects (102 variables).
Figure 3 is three plots of PCA. Factor loading plot shows
healthy subjects locate in the 2" and third quadrants and tumor
patients locate in the first and fourth quadrants. The scatter plot
shows that the two classes are on two lines and roughly 45
degrees with Prinl. The 174%, 178", 179" and other several
RipDSs of tumor class are outliers those may indicate new
subclasses pointed by Golub et al. If we can cooperate with
medical specialists, we can understand the different role of 179
RIPs more precisely. If medical doctors confirm these RIPs
shows the malignancy indexes of cancer, we can use 179 RIPs
and Prinl as a cancer diagnosis in addition to five-year survival
rate. If so, it is the gospel to the patient.

4.3.3 Malignancy indexes by PCA

We analyze other five microarrays and publish the position
book that proposes the cancer gene diagnosis [37]. In 2017,
because we find 130 BGSs of Alon et al. microarray by LINGO
Program4, Table 3 is a summary of RatioSVs of 130 BGSs of
Alon et al. in addition to all SMs of six microarrays. Although
BGS is more critical than SM for the study of cancer gene
research, BGS may be useless for cancer gene diagnosis
because the ranges of BGS and SM of Alon are [0.001%, 0.9%]
and [2.35%, 26.76%], respectively. We must investigate the
threshold of RatioSV for cancer gene diagnosis in future work.



If RatioSVs over than 5% are useful for cancer gene diagnosis,
63 RIPs among 64 SMs are useful for malignancy indexes. If
some cancer patients are cured by treatments and are
misclassified into a healthy class by 63 RIP malignancy indexes,
medical doctors may judge their patients are cured entirely
before five years after treatments. This is our dream.

5.

Table 3 The Summary of RatioSVs of RIP and PCA

Data SM/BGS | Max Ratio Min Ratio PCA
Alon et al. 130 0.90% 0.001%  4.50%
Alon et al. 64 26.76% 2.35% 30.40%
Singh et al. 179 11.67% 0.28% 14.35%
Golub et al. 69 15.69% 0.00% 34.88%
Tienetal. 159 19.13% 0.63% 24%
Chiaretti et al. 95 38.98% 10.73%  51.46%
Shipp et al. 130 30.67% 4.99% 31.70%
Conclusions

We solve Problem5 within 53 days because Theory is most

suitable for cancer gene analysis using microarrays. Many
researchers could not solve ProblemS5 after 1970 because of the
following reasons:

1y

2)

3)

4

Statistical discriminant functions are useless for cancer
gene analysis. These functions cannot discriminate LSD
theoretically. The remaining two difficulties are unrelated
excuses of these functions.

If some researchers discriminated microarrays by H-SVM,
he or she found microarrays were LSD. Since we have
already found "MNM monotonic decrease" before 2010,
they could solve Problem5 around 2010.

When we explained the draft [37] to Japanese genetic
specialist in 2017, he interrupted our explanation and
suggested us as follows. “Because in the USA it has
already been concluded that the microarrays were useless
for genetic analysis at all, we had better terminate our
research.” However, the microarrays used by the six US
research groups included information useful for cancer
gene diagnosis. It is much easier for them to verify our
results, compared to the research they have done. We think
that it was impossible for them to doubt that the statistical
theory which seemed to be perfect was useless at all. We
would like to propose they complete their research by
verifying our results.

There are many reasons for failure. The development of the
discrimination theory has been developed on a hypothesis
of the normal distribution (Lotus eating), which was
proposed in a period without a computer environment.
Fisher verified his LDF by the actual data such as Fisher's
iris data. QDF was recommended if data did not satisfy
Fisher’s assumption. However, many posterity researchers
have neglected empirical research based on real data and
have developed a mathematical theory based on normal
distribution. For these reasons, nobody found four

5)

6)

7)

(1]

(2]

(3]
(6]

(7]
(8]

problems of discriminant analysis. In particular, NM,
which is the basis of the discriminant analysis, has many
drawbacks (Problem1). Although there are problems with
NM, even more, difficult statistics are proposed without
actually considering whether it is useful or not. Moreover,
although the discrimination result of LSD can be explicitly
evaluated, it is a problem that this research is not done.
Logistic regression using the maximum likelihood
estimation method confirms that it can empirically
discriminate all SMs correctly. Many users today use
logistic regression and SVM because they vaguely
understand the problem of discriminant function based on
the variance-covariance matrix.
We are the first success of cancer gene analysis that can
decompose six microarrays into plural SMs and the noise
subspace. Although the gene size included in all SMs were
less than the number of subjects, the standard statistical
methods could not analyze all SMs and obtain useful
information. However, RatioSV indicates that several
malignancy indexes are useful for cancer gene diagnosis.
These results must be validated by medical gene specialists.
Notably, it is the most effective that members of six
research groups will validate our results. We expect their
cooperation will establish the cancer gene diagnosis using
microarrays. It is clear that only the oncogenes already
found medically cannot completely separate the two
groups. We believe that the combination of newly
discovered genes in microarrays will open up a new world
of cancer gene diagnosis and contribute the human being.
If a research group with genetic data makes us a
cooperative researcher, we will be able to complete the
analysis shown in this research earlier than anyone and
provide the results.
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