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1 Introduction

Definition 1 (Ferguson 1973). Let ρ be a probability measure on (R,B(R)). A random proba-

bility measure F is called a Dirichlet process with base measure ρ, if F satisfies

(F (A1), ..., F (Ak)) ∼ Dir(ρ(A1), ..., ρ(Ak))

for every finite measurable partition {A1, ..., Ak} of R.

For a probability measure µ and θ > 0, a Dirichlet process with ρ = θµ will be denoted by

DP(θ;µ). For simplicity, we assume µ is diffuse.

Theorem 1 (Ferguson 1973). A Dirichlet process is constructed as follows.

1. Let {Yt; t ≥ 0}, Y0 = 0 be the gamma process with Yt ∼ Ga(θt, 1). The jump sizes

(J1, J2, ...) with
∑∞

i=1 Ji = Y1.

2. For Xi
ind∼ µ(·),

F (·) =
∞∑
i=1

Ji
Y1

δXi(·) ∼ DP(θ;µ).

The prediction rule is well known. Let F ∼ DP(θ;µ). By conjugacy of the Dirichlet distri-

bution in multinomial sampling,

(Fn(A1), ..., Fn(Ak)) := (F (A1), ..., F (Ak))|(X1, ..., Xn)

∼ Dir

(
θµ(A1) +

n∑
i=1

δXi(A1), ..., θµ(Ak) +

n∑
i=1

δXi(Ak)

)

and

Fn ∼ DP

(
θ + n,

θµ+
∑n

i=1 δXi

θ + n

)
.

P(X1 ∈ ·) = E{P(X1 ∈ ·|F )} = E(F (·)) = µ(·)，

P(Xn+1 ∈ ·|X1, ..., Xn) =
θ

θ + n
µ(·) + n

θ + n
Λn(X1, ..., Xn)(·).

Here, Λn(X1, ..., Xn) := n−1
∑n

i=1 δXi is the empirical distribution. In Bayesian context, F is

called a prior process, and the posterior distribution is called the prediction rule. The sequential
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sampling scheme is well known as the Blackwell-MacQueen urn scheme (1973), or the Chinese

restaurant process.

The prediction rule induces measures on partitions. Let the j-th firstly appear value of

(X1, ..., Xn) be X∗
j , j ∈ {1, 2, ..., k}. Then, (n1, ..., nk), nj := #{i;Xi = X∗

j } is a integer

partition of a positive integer n. The prediction rule gives

P(N1 = n1, ..., Nk = nk) =
θk

(θ)n

k∏
j=1

(nj − 1)!.

This is symmetric under permutations of (n1, ..., nk), and the distribution of the multiplicities

of integers (c1, ..., cn), ci := #{j;nj = i}, is

P(C1 = c1, ..., Cn = cn) =
n!

(θ)n

n∏
i=1

(
θ

i

)ci 1

ci!
,

where (θ)n := θ(θ + 1) · · · (θ + n− 1). This measure on partitions is called the Ewens sampling

formula (1972; Antoniak 1974). Sibuya (1993) considered the prediction rule as a random

clustering process, and (c1, ..., cn) are called size indices.

A partition λ of n (λ ⊢ n) is

λ = (λ1, λ2, ..., λk)

for some k with λ1 ≥ λ2 ≥ ... ≥ λk > 0 with λ1 + λ2 + · · ·+ λk = n. Here, l(λ) = k is called the

length of partition. Let

Pn := {λ;λ ⊢ n}, Pn,k := {λ;λ ⊢ n, l(λ) = k}.

For λ ∈ Pn,k, the multiplicities ci(λ) := #{j;λj = i} satisfies

1 · c1 + 2 · c2 + · · ·+ n · cn = n, c1 + c2 + · · ·+ cn = k.

and determines the shape of a Young diagram uniquely. Figure 1 gives an example.

Figure 1: Young diagram of λ = (4, 2, 1).

For θ = 1, Ewens sampling formula is

P(C = c) =
1

zλ
, zλ :=

n∏
i=1

icici!, λ ∈ Pn.
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young diagram cycle decomposition probability (1/zλ)

c3 = 1 (123), (132) 1/3

c2 = 1, c1 = 1 (12)(3), (23)(1), (31)(2) 1/2

c1 = 3 (1)(2)(3) 1/6

Table 1: S3

This is the distribution of cycle lengths in cycle decomposition of random permutations. It is

the uniform distribution with respect to cardinality of conjugacy class of the symmetric group.

Table 1 gives an example.

For symmetric polynomials Λk = Z[x1, ..., xk]Sk , Λk = ⊕n≥0Λ
n
k , where Λn

k consists of the ho-

mogeneous symmetric polynomials of degree n, together with the zero polynomial. A monomial

symmetric function is

mλ(x1, ..., xk) :=
∑
σ

k∏
i=1

xσi
i , σ ∈ {ρ;π(ρ) = λ}.

For example,

m(2,1) = x21x2 + x1x
2
2 ∈ Λ3

2.

For each r ≥ 1 the r-th power sum is

pr := m(r) =
k∑

i=1

xri .

The power sum symmetric function is defined as

pλ := pλ1 · · · pλl(λ)

For example,

p(2,1) = p2p1 = (x21 + x22)(x1 + x2).

The Schur symmetric function is defined as

sλ(x) :=
det(x

λj+k−j
i )1≤i,j≤k

det(xk−j
i )1≤i,j≤k

.

It satisfies Cauchy’s identity ∏
i,j

(1− xiyj)
−1 =

∑
λ

sλ(x)sλ(y),

the sum is over all partitions. Let us introduce the orthonormality ⟨sλ, sµ⟩ = δλ,µ. In terms of

the power sum symmetric functions,∏
i,j

(1− xiyj)
−1 =

∑
λ

z−1
λ pλ(x)pλ(y),
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and it follows that

⟨pλ, pµ⟩ = δλµzλ.

The Jack symmetric function is a generalization of the Schur symmetric function. The Jack

symmetric functions are derived by the orthogonality

⟨pλ, pµ⟩α = δλ,µzλα
l(λ),

coming from the identity∏
i,j

(1− xiyj)
−1/α =

∑
λ

(zλα
l(λ))−1pλ(x)pλ(y).

With normalization, (zλα
l(λ))−1, θ := 1/α is the Ewens sampling formula. The Macdonald

symmetric function is based on the identity∏
i,j

(txiyj ; q)∞
(xiyj ; q)∞

=
∑
λ

(zλ(q, t))
−1pλ(x)pλ(y),

where

zλ(q, t) := zλ
∏
i≥1

(
1− qi

1− ti

)ci

, (x; y)n :=
n−1∏
i=0

(1− xyi),

which reduces to the Jack function in the limit t = qθ, q → 1.

Diaconis and Lam (2012) discussed mixing of MCMC for a random walk on Young diagrams

with the probability measure given by (zλ(q, t))
−1. We will call the random partition Macdonald

partition.

Algorithm 1 (Diaconis & Lam 2012). Random walk for MCMC for the probability measure

(zλ(q, t))
−1 on Young diagrams.

1. Set t = 0 and pick an initial sample λ(0).

2. Pick parts σ with probability

P(Σ = σ) =
1

qn − 1

n∏
i=1

(
ci(λ

(t))

ci(λ
(t)\σ)

)
(qi − 1)ci(σ).

3. Pick parts σ′ ⊢ |σ| with probability

P(Σ′ = σ′) =
t

t− 1

n∏
i=1

{
1

i

(
1− 1

ti

)}ci(σ
′) 1

ci(σ′)!
.

4. Set λ(t+1) = (λ(t)\σ) ∪ σ′, increment t to t+ 1, and go to Step 2.

This talk we will see
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• MCMC seems to be inevitable because some random partitions including the Macdonald

partition does not admit sequential sampling scheme.

• Nevertheless, we will see that a direct sampling from the random partition is possible.

• As a statistical application, we will discuss posterior sampling in a mixture model setting.

2 Gibbs partitions

Definition 2 (Pitman 2006; M 2018). Gibbs partition is the probability measure on partitions

λ ⊢ n ∈ N := {1, 2, ...} of the form

P(C = c) =
vn,l(c)

Bn(v, w)
n!

n∏
i=1

(wi

i!

)ci 1

ci!
.

Here, l(c) = c1 + · · ·+ cn is the length, and the normalization constant is written as

Bn(v, w) =

n∑
k=1

vn,kBn,k(w),

where

Bn,k(w) =
∑

c∈Pn,k

n!
n∏

i=1

(wi

i!

)ci 1

ci!

is known as the partial Bell polynomial.

Gibbs partitions are commonly used to characterize prior processes.

Remark 1 (Exponential structure). If (vn,k) = 1, Bn(w) := Bn(1, w) is the Bell polynomial.

The Gibbs partition reduces to the exponential structure (exponential generating function of

Bn(w) is e
W (x), where W (x) is exponential generating function of (wi)). The exponential struc-

ture is a class of multiplicative measures defined by Vershik (1996) for study of limit shapes of

random Young diagrams.

Example 1 (Pitman’s partition, 1995). Pitman’s partition is the case with parameters

vn,k = (θ)(θ + α) · · · (θ + (k − 1)α), wi = (1− α)i−1, α < 1,

and we have Bn(v, w) = (θ)n. This is a sample from the two-parameter Poisson-Dirichlet process

(Pitman & Yor 1997), which is obtained from the α-stable subordinator. If α = 0, this random

partition reduces to the Ewens sampling formula.

Example 2 (Macdonald’s partition). Macdonald’s partition is the case with parameters

vn,k = 1, wi =
ti − 1

qi − 1
(i− 1)!.
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From a q-analogue of the negative binomial theorem, we have

Bn(w) =
(t; q)n
(q; q)n

n!, (x; y)n :=
n−1∏
i=0

(1− xyi).

Taking q → 1 with t = qθ, this random partition reduces to the Ewens sampling formula.

Both of them are variations of sampling from the Dirichlet process, but the former is ex-

changeable, while the latter is not exchangeable.

Definition 3 (Kingman 1978). A random partition Πn of a finite set [n] is called exchangeable,

if for each partition {A1, ..., Ak} of [n]

P(Πn = {A1, ..., Ak}) = pn(|A1|, ..., |Ak|)

for some symmetric function pn. Moreover, if pn is consistent, namely,

pn(n1, ..., nk) = pn+1(n1, ..., nk, 1) +

k∑
i=1

pn+1(n1, ..., ni + 1, ..., nk),

for all n ∈ N, the sequence of random partitions is called (infinite) exchangeable.

Theorem 2 (Gnedin & Pitman 2005). Gibbs partition is consistent iff wi = (1− α)i−1, α < 1．

In general, a prediction rule is described as

P(Xn+1 ∈ ·|X1, ..., Xn) =

(
1−

k∑
i=1

Pi

)
µ(·) +

k∑
j=1

PjδXj
∗(·)

for some random sequence (P1, P2, ...).

Theorem 3 (Pitman 1995; Lee et al. 2013). A random partition is given by a prediction rule is

equivalent to partially exchangeability of the random partition. Moreover, a partial exchangeable

partition is exchangeable iff pn is symmetric.

Corollary 1. A Gibbs partition is symmetric. If it is not consistent, a prediction rule is not

available.

Next is another example of non-exchangeable Gibbs partition. An advantage in applications

is that the normalization constants have closed forms.

Example 3 (Hoshino’s partition). The limiting quasi-multinomial distribution by Hoshino

(2005) is a random partition obtained via tilted random forests of labeled rooted trees. This is

the case with parameters

vn,k = θk, wi = ii−1.
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The partial bell polynomial has a colosed form

Bn,k(w) =

(
n− 1

k − 1

)
nn−k

and we have

Bn(v, w) = θ(θ + n)n−1.

3 Direct sequential sampler via A-hypergeometric systems

Definition 4 (Gel’fand, Kapranov, Zelevinski 1990). For an non-negative integer valued d×m

matrix A of rank d and a vector b ∈ Cm, the system of linear PDEs with annihilators

m∑
j=1

aijθj − bj , i ∈ {1, ..., d}, θj := xj∂j ,

∂c+ − ∂c− , c ∈ kerA ∩ Zm,

is called the A(GKZ)-hypergeometric system HA(b). Here, c+i := ci ∨ 0, c−i := (−ci) ∨ 0. HA(b)

is a left ideal of the Weyl algebra and called A-hypergeometric ideal. The series solution around

the origin

ZA(b;x) :=
∑

{c;Ac=b,c∈N0
m}

xc

c!
, xc :=

m∏
i=1

xcii , c! :=
m∏
i=1

ci!

is called the A-hypergeometric series. Here, ZA(b;x) = 0 if b /∈ AN0
m, N0 := 0 ∪ N.

Definition 5 (Takayama, Kuriki, Takemura 2018). Consider m cells and let ti ∈ [m] be the cell

of the i ∈ [n]-th observation of a sample of size k. For the count vector

(c1, ..., cm), cj := #{i; ti = j},

the probability distribution with mass function of the form

P(C1 = c1, ..., Cm = cm) =
1

ZA(b;x)

xc

c!

is called the A-hypergeometric distribution. The support is {c;Ac = b, c ∈ N0
m} and ZA(b;x)

is the A-hypergeometric polynomial.

Remark 2. An A-hypergeometric distribution is the conditional distribution of multinomial

sampling from log-affine models given Ac = b.

Homogeneity of the polynomial (row-space of A contains (1, ..., 1)) demands an annihilator

m∑
i=1

θi − n.
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Using the contiguity relation of the A-hypergeometric polynomial

θiZA(b;x) = xiZA(b− ai;x), i ∈ [m],

where ai is the i-th column vector, we have

m∑
i=1

xiZA(b− ai;x) = nZA(b;x),

or
∑m

i=1 eA(b; i)/n = 1, where

eA(b; i) := E(Ci|AC = b) =
ZA(b− ai;x)

ZA(b;x)
xi.

Here, eA(b; i)/n can be regarded as the transition probability from ZA(b;x) to ZA(b − ai;x)

in a Markov chain with reducing degree of polynomial by one. This observation gives a direct

sequential sampling algorithm for A-hypergeometric distributions.

Algorithm 2 (M 2017). Direct sequential sampling from A-hypergeometric distributions.

1. Pick t1 = j with probability eA(b; j)/n.

2. For i = 2, ..., n, pick ti = j with probability

eA(b− (at1 + · · ·+ ati−1); j)

n− i+ 1
.

Remark 3. To compute the expectations eA(b; j), we can use a Pfaffian system for a holonomic

ideal I

θi •Q = PiQ, i ∈ [rank(I)],

where Q is the standard monomial. It is generally possible to obtain the Pfaffian system by the

theory of Gröbner bases, but more efficient ways are devised for actual purpose.

A homogeneous 2-row matrix A is generally given as

A =

(
0 i1 i2 · · · im−1

1 1 1 · · · 1

)
.

Here, 0 < i1 < i2 < · · · < im−1 are relatively prime integers. If im−1 = m − 1, b1, b2 ∈ N, the
support is Pb1+b2,b2 :

1 · c1 + 2 · c2 + · · ·+m · cm = b1 + b2, c1 + c2 + · · ·+ cm = b2.

Here, b1 + b2 and b2 are the weight and length of a partition.

Remark 4. The toric ideal of the polynomial ring with A determines an algebraic curve called

monomial curve. In particular, if im−1 = m − 1 the curve is the rational normal curve. The

system was considered in the context (Cattani et al. 1999; Saito et al. 2010)．
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For a Gibbs partition

P(C = c) =
vn,l(c)

Bn(v, w)
n!

n∏
i=1

(wi

i!

)ci 1

ci!
, c ∈ Pn,

the length l(c) = k is the sufficient statistic for parameters (vn,k), and the conditional distribution

is an A-hypergeometric distribution

P(C = c|AC = b) =
1

ZA(b;x)

xc

c!
, c ∈ Pn,k,

where

A =

(
0 1 2 · · · n− k

1 1 1 · · · 1

)
, b =

(
n− k

k

)
, xi =

wi

i!
,

and n!ZA(b;x) = Bn,k(w).

Now we have a direct sampler for Gibbs partitions.

Algorithm 3. Direct sampling from Gibbs partitions.

1. Pick a length with P(l(λ) = k) = vn,kBn,k(w)/Bn(w).

2. Pick the rows (n1, ..., nk) by the direct sequential sampler.

Example 4 (A path of P7,3).

(4, 2, 1) → (4, 1) → (1) → 0

x4x2x1 x4x1 x1

(3, 2, 2) (3, 2)

+x3x
2
2/2! + x3x2

(5, 1, 1)

+x5x
2
1/2!

P(path) =
x1x4 + x2x3

x1x2x4 + x21x5/2! + x22x3/2!

x2
3

x1
x1x4 + x2x3

x4
2

=
P((4, 2, 1))

3!
.

Remark 5. Hoshino’s partition and Pitman’s partition with α = −1, 1/2 are the cases that the

sampler works without resorting to use of the Pfaffian system, because we know closed forms of

the partial Bell polynomials.

4 Posterior sampling

A typical Bayesian semiparametric setting is data (Y1, ..., Yn) derived from a hierarchical model

(MacEachern 1994; Escober & West 1995)

Yi|Xi, σ
ind∼ N(Yi;Xi, σ), σ ∼ π(σ),

Xi|P
ind∼ P, P ∼ DP(θ;µ).
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The marginalized model for the Dirichlet process mixture

(X1, ..., Xn) ∼ P(X1, ..., Xn)

is sampled directly by the Blackwell-MacQueen urn scheme. To draw from posterior π(Y, σ|X),

a Gibbs sampler is used, where we iteratively draw values from conditional distributions

Xi|(X−i, σ, Y ), i ∈ [n], σ|(X,Y ).

Thanks to the exchangeability, the prediction rule gives

P(Xi = ·|X−i, σ, Y ) ∝ N(Yi;Xi = ·, σ)θµ(·) +
k∑

j=1

N(Yi;Xj
∗, σ)njδXj

∗(·).

Algorithm 4 (Prior sampling). Sampling from a prior associated with a Gibbs partition.

1. Pick a Gibbs partition (n1, ..., nk) by the direct sampler.

2. Pick (X∗
1 , ..., X

∗
k) as i.i.d. from the base measure µ(·).

3. Pick (X1, ..., Xn) such that nj = #{i;Xi = X∗
j }.

Remark 6. A generalization of explicit allocation prior given by Green & Richardson (2001)

for the Dirichlet multinomial model.

Posterior sampling will be discussed.

5 Summary

• A direct sampling from Gibbs partitions including the Macdonald partition was introduced.

• The sampler is based on the direct sequential sampler from the A-hypergeometric distri-

bution associated with monomial curves.

• As a statistical application, posterior sampling in a mixture model setting was discussed.

• Beyond exchangeability has been attract interests of Bayesians, but probably outside of

partial exchangeability has not been discussed.

References can be found in Mano S (2018) Partitions, hypergeometric systems and Dirichlet

processes in statistics, Springer Briefs in Statistics, JSS Research Series in Statistics, Springer.
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