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1 Introduction

Definition 1 (Ferguson 1973). Let p be a probability measure on (R, B(R)). A random proba-

bility measure F' is called a Dirichlet process with base measure p, if F' satisfies
(F(A1), ooy F(Ay)) ~ Dir(p(A1), .., p(Ar)
for every finite measurable partition {A1, ..., A} of R.

For a probability measure p and 6 > 0, a Dirichlet process with p = O will be denoted by
DP(0; p). For simplicity, we assume g is diffuse.

Theorem 1 (Ferguson 1973). A Dirichlet process is constructed as follows.

1. Let {Yi;;t > 0}, Yo = 0 be the gamma process with ¥; ~ Ga(0t,1). The jump sizes

2. For X; % (), ~
F()= Z +-0x,(-) ~ DP(6; p).

The prediction rule is well known. Let F' ~ DP(6; ). By conjugacy of the Dirichlet distri-

bution in multinomial sampling,
(Fr(Ay), ..., Fr(Ag)) == (F (A1), ..., F(Ap)| (X4, ..., X»)

~ Dir <9M(A1) + Z": 0x; (A1), ..., Ou(Ar) + Zn: 0x; (Ak)>

i=1 i=1

and

F, ~ DP <9+n, Ot 2 i O 5Xi) .

0+n
P(X1 € ) = E{P(Xy € [F)} = E(F()) = p(-)0

0 n

P(Xn-‘rl € “Xla"'aXn) = 9+n/’6() + 0+n

A (X1, Xn) (o).

Here, A, (X1,..., Xp) :=n~! >oi 0x, is the empirical distribution. In Bayesian context, F' is

called a prior process, and the posterior distribution is called the prediction rule. The sequential
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sampling scheme is well known as the Blackwell-MacQueen urn scheme (1973), or the Chinese
restaurant process.

The prediction rule induces measures on partitions. Let the j-th firstly appear value of
(X1,.., Xyp) be X7, 5 € {1,2,...,k}. Then, (n1,..,ng), nj == #{i;X; = X;} is a integer
partition of a positive integer n. The prediction rule gives

k

Qk

This is symmetric under permutations of (nq,...,ny), and the distribution of the multiplicities

of integers (ci, ..., ¢pn), ¢ == #{j;n; =i}, is

n! r [0\ 1
P(Cl :017---7Cn:cn) = (6) <Z> ;7
n -

)

where (0),, :=0(0@ +1)---(0 +n —1). This measure on partitions is called the Ewens sampling
formula (1972; Antoniak 1974). Sibuya (1993) considered the prediction rule as a random
clustering process, and (cq, ..., ¢,) are called size indices.
A partition A of n (A n) is
A= (A1, A2, 00, M)

for some k with Ay > Ao > ... > A\ > 0 with Ay + Ao + -+ - + Ay = n. Here, [(\) = k is called the
length of partition. Let

Pni={NAFn}, Prg i={NAEn,l(N) =k}
For X € P, i, the multiplicities ¢;(\) := #{j; \; = i} satisfies
l-ci1+2-co+---+n-c, =n, cit+e+--+c, =k

and determines the shape of a Young diagram uniquely. Figure 1 gives an example.

Figure 1: Young diagram of A = (4,2, 1).

For 6 = 1, Ewens sampling formula is



young diagram cycle decomposition probability (1/zy)

3 =1 (123), (132) 1/3

co=1a=1 (12)(3),(23)(1),(31)(2) 1/2

=3 (1)(2)(3) 1/6
Table 1: Ss3

This is the distribution of cycle lengths in cycle decomposition of random permutations. It is
the uniform distribution with respect to cardinality of conjugacy class of the symmetric group.
Table 1 gives an example.

For symmetric polynomials Ay = Z[z1, ..., xk]sk, Ay, = ®p>0AL, where A} consists of the ho-
mogeneous symmetric polynomials of degree n, together with the zero polynomial. A monomial

symmetric function is

k
my(z1, ..., Tx) 1= Zij, o €{p;m(p) = A}.
o =1
For example,

2 2 3
mg,1) = T1T2 + 1125 € Ay,

For each r > 1 the r-th power sum is

The power sum symmetric function is defined as

DX = DPxi v P
For example,
Py = p2p1 = (2} + 23) (21 + 32).
The Schur symmetric function is defined as

Aj+k—j
det(z;’ ;
S/\([B) = (‘rz )ISZJS]‘?.

o
det(w; ?)1<ij<k
It satisfies Cauchy’s identity
[T = i)™ =D sa@)say),
i,J A
the sum is over all partitions. Let us introduce the orthonormality (sy,s,) = 0y ,. In terms of

the power sum symmetric functions,

IO = ziy) ' =D 2 "pal@)pa(),
A

2'7j



and it follows that
(D Pu) = Irp2a

The Jack symmetric function is a generalization of the Schur symmetric function. The Jack

symmetric functions are derived by the orthogonality

(Prs Puder = O pzacd

coming from the identity

T1@ = ziy) 7> = " (22ddV) " pa(@)pay).
ij A
With normalization, (zxa/™)~1, @ := 1/a is the Ewens sampling formula. The Macdonald

symmetric function is based on the identity

11 Uity Boe _ D (aalg: 1) 'oal@)pa(y),

(l‘z’yj; Q)oo X

,J
where
1 o ql C; n—1 )
At =] (1 _ti) SR | [Ca—
i>1 i=0

which reduces to the Jack function in the limit t = ¢, ¢ — 1.
Diaconis and Lam (2012) discussed mixing of MCMC for a random walk on Young diagrams
with the probability measure given by (2(g,t))~!. We will call the random partition Macdonald

partition.

Algorithm 1 (Diaconis & Lam 2012). Random walk for MCMC for the probability measure
(2x(q,t))~" on Young diagrams.

1. Set ¢ = 0 and pick an initial sample A(?).

2. Pick parts o with probability

1 - Cl()\(t)) i cilo
P(E = U) = ¢ —1 11;[1 ( Ci(/\(t)\a) ) (q - 1) il )‘

3. Pick parts ¢’ - |o| with probability

t (1 1\ %) 1
P(Y =o') = —— “(1-= .
(®=0o) t—1i:1{i< t’)} ci(0)!

4. Set A1) = (A(O\g) U ¢’, increment ¢ to ¢t + 1, and go to Step 2.

This talk we will see



e MCMC seems to be inevitable because some random partitions including the Macdonald

partition does not admit sequential sampling scheme.
e Nevertheless, we will see that a direct sampling from the random partition is possible.

e As a statistical application, we will discuss posterior sampling in a mixture model setting.

2 Gibbs partitions

Definition 2 (Pitman 2006; M 2018). Gibbs partition is the probability measure on partitions
AFneN:={1,2,..} of the form

Here, I(c) = ¢1 + -+ - + ¢, is the length, and the normalization constant is written as
n
Bn(U, ’LU) = Z Un,an,k(w)v
k=1

where
n

Buw(w) = > [T (5)" 1'

CG’Pn’k =1

is known as the partial Bell polynomial.
Gibbs partitions are commonly used to characterize prior processes.

Remark 1 (Exponential structure). If (v,x) = 1, Bp(w) := B, (1,w) is the Bell polynomial.
The Gibbs partition reduces to the exponential structure (exponential generating function of
By (w) is eV(*) where W (x) is exponential generating function of (w;)). The exponential struc-
ture is a class of multiplicative measures defined by Vershik (1996) for study of limit shapes of

random Young diagrams.

Example 1 (Pitman’s partition, 1995). Pitman’s partition is the case with parameters
b = )0 +0a) - (0+ (k- D), wi=(1—a)it, a<l,

and we have B, (v, w) = (6),. This is a sample from the two-parameter Poisson-Dirichlet process
(Pitman & Yor 1997), which is obtained from the a-stable subordinator. If a = 0, this random

partition reduces to the Ewens sampling formula.

Example 2 (Macdonald’s partition). Macdonald’s partition is the case with parameters

-1
Up k= 1, w; = . 1(27 1)l




From a g-analogue of the negative binomial theorem, we have

Batw) = B0 (g = T[0 - o)
! (@q)n R ’

Taking ¢ — 1 with ¢ = ¢?, this random partition reduces to the Ewens sampling formula.

Both of them are variations of sampling from the Dirichlet process, but the former is ex-

changeable, while the latter is not exchangeable.

Definition 3 (Kingman 1978). A random partition II,, of a finite set [n] is called exchangeable,
if for each partition {A4, ..., Ay} of [n]

P(IL, = {A1, .., A}) = pu(| A1l .., [Ar])

for some symmetric function p,. Moreover, if p, is consistent, namely,

k

pn(”lv weey nk) = pn—l—l(nl; ey Mg,y 1) + an+1(n17 cey T + 17 "'7nk)7
=1

for all n € N, the sequence of random partitions is called (infinite) exchangeable.
Theorem 2 (Gnedin & Pitman 2005). Gibbs partition is consistent iff w; = (1 — «);—1, a < 10

In general, a prediction rule is described as
k k
P(Xn41 € [Xq,..., Xp) = (1 - ZR) () + Zle(SXj*(')
i=1 j=1

for some random sequence (P, Py, ...).

Theorem 3 (Pitman 1995; Lee et al. 2013). A random partition is given by a prediction rule is
equivalent to partially exchangeability of the random partition. Moreover, a partial exchangeable

partition is exchangeable iff p,, is symmetric.

Corollary 1. A Gibbs partition is symmetric. If it is not consistent, a prediction rule is not

available.

Next is another example of non-exchangeable Gibbs partition. An advantage in applications

is that the normalization constants have closed forms.

Example 3 (Hoshino’s partition). The limiting quasi-multinomial distribution by Hoshino
(2005) is a random partition obtained via tilted random forests of labeled rooted trees. This is
the case with parameters

Un,k = Gk, w; = il_l.



The partial bell polynomial has a colosed form

-1
By k(w) = < :_ . ) nk

Bp(v,w) = 6(6 4 n)" L.

and we have

3 Direct sequential sampler via A-hypergeometric systems

Definition 4 (Gel’fand, Kapranov, Zelevinski 1990). For an non-negative integer valued d x m

matrix A of rank d and a vector b € C™, the system of linear PDEs with annihilators

Zaijej — bj, ie{l,..d}, 0j = ;0;,
j=1
+

o —0° c€ kerANZ™,

is called the A(GKZ)-hypergeometric system Ha(b). Here, ¢ :=¢; V0, ¢; := (—¢;) V0. Ha(b)

is a left ideal of the Weyl algebra and called A-hypergeometric ideal. The series solution around

the origin
$C m m
Ci fp—
Za(byx) = Z 0 x° ::Ha;i , c! .—Hci!
{C;Aczb,CGNom} ’ =1 =1

is called the A-hypergeometric series. Here, Z4(b;z) =0 if b ¢ ANg™, Ny :=0UN.

Definition 5 (Takayama, Kuriki, Takemura 2018). Consider m cells and let ¢; € [m] be the cell

of the i € [n]-th observation of a sample of size k. For the count vector

(Cly--'acm)7 Cj = #{Z7t’b :]}7
the probability distribution with mass function of the form
1 x¢

P(Cl =C1, ,Cm = Cm) = mg

is called the A-hypergeometric distribution. The support is {c¢; Ac = b,c € Ng™} and Z(b; )
is the A-hypergeometric polynomial.

Remark 2. An A-hypergeometric distribution is the conditional distribution of multinomial

sampling from log-affine models given Ac = b.

Homogeneity of the polynomial (row-space of A contains (1,...,1)) demands an annihilator

in: 91 —n.
i=1

7



Using the contiguity relation of the A-hypergeometric polynomial
0:Za(b;x) = x;Z4(b— a;;x), i € [m],

where q; is the i-th column vector, we have
m
Z i Za(b—a;;x) =nZy(b;x),
i=1

or 221 ea(b;i)/n =1, where

Z4(b— aj;x)

Here, e4(b;i)/n can be regarded as the transition probability from Z(b;z) to Za(b — a;;x)
in a Markov chain with reducing degree of polynomial by one. This observation gives a direct

sequential sampling algorithm for A-hypergeometric distributions.
Algorithm 2 (M 2017). Direct sequential sampling from A-hypergeometric distributions.
1. Pick t; = j with probability e4(b;7)/n.

2. For ¢ = 2,...,n, pick t; = 7 with probability

ealb—(at, + -+ +at_,);7)
n—i+1 '

Remark 3. To compute the expectations e4(b; j), we can use a Pfaffian system for a holonomic
ideal I
;0 Q=PFQ, i€ [rank(l)],

where @ is the standard monomial. It is generally possible to obtain the Pfaffian system by the

theory of Grobner bases, but more efficient ways are devised for actual purpose.

A homogeneous 2-row matrix A is generally given as

Here, 0 < i1 < g < --+ < iy,—1 are relatively prime integers. If i,,_1 = m — 1, by, by € N, the

support is Py, 4y by
l-cit+2-co+---+m-cp=b1+ba, c1 +ca+ -+ ¢y = ba.
Here, b1 + b2 and bs are the weight and length of a partition.

Remark 4. The toric ideal of the polynomial ring with A determines an algebraic curve called
monomial curve. In particular, if i,,,_1 = m — 1 the curve is the rational normal curve. The

system was considered in the context (Cattani et al. 1999; Saito et al. 2010)0



For a Gibbs partition

N N Un,i(c) “ wi\¢ 1
P(C = C) = Bn('l),U))n"LI;[l <j) a, cEc Pn;

the length I(c) = k is the sufficient statistic for parameters (v, ), and the conditional distribution

is an A-hypergeometric distribution
1 xz°
Za(byx) !’

o1 2 .- —k —k ;
A - " 9 b - " 9 xi = &7
111 --- 1 k 7!
and n!Z4(b;x) = By, p(w).

Now we have a direct sampler for Gibbs partitions.

P(C = ¢|AC = b) = ¢ € Pu

where

Algorithm 3. Direct sampling from Gibbs partitions.
1. Pick a length with P(I(\) = k) = vy 1, Bp i (w) /B (w).
2. Pick the rows (n1,...,ny) by the direct sequential sampler.

Example 4 (A path of P73).

(4,2,1) — (4,1) — (1) — 0
L4T2T1 421 1
(3,2,2) (3,2)
+x3m§/2! + X319
(5,1,1)
527 /2!
Ploath) = T1T2T4 il;?x—g/z?? z3x3/2! % x1x4:j—1 T2T3 % - P((4;J,|271))
Remark 5. Hoshino’s partition and Pitman’s partition with o = —1,1/2 are the cases that the

sampler works without resorting to use of the Pfaffian system, because we know closed forms of
the partial Bell polynomials.
4 Posterior sampling

A typical Bayesian semiparametric setting is data (Y7, ..., Y,,) derived from a hierarchical model

(MacEachern 1994; Escober & West 1995)

Yvi|Xiao-iz’d N(Y:MX’MO-)) O‘Nﬂ'(O'),
X;|P ™ p, P ~DP(6; ).



The marginalized model for the Dirichlet process mixture
(X1, X)) ~P(X71,..., X5)

is sampled directly by the Blackwell-MacQueen urn scheme. To draw from posterior m(Y, o|X),

a Gibbs sampler is used, where we iteratively draw values from conditional distributions
Xi’(X—i707Y)7 (S [n]’ O"(X,Y)

Thanks to the exchangeability, the prediction rule gives

k
P(X; =-|X_i,0,Y) o N(Yi; X; =, 0)0u(-) + Y _ N(Vi; X, 0)n;dx, ().

j=1
Algorithm 4 (Prior sampling). Sampling from a prior associated with a Gibbs partition.
1. Pick a Gibbs partition (nq,...,ny) by the direct sampler.
2. Pick (X7,...,X}) as i.i.d. from the base measure pu(-).
3. Pick (Xi,..., Xp) such that n; = #{i; X; = X7}.

Remark 6. A generalization of explicit allocation prior given by Green & Richardson (2001)

for the Dirichlet multinomial model.

Posterior sampling will be discussed.

5 Summary

A direct sampling from Gibbs partitions including the Macdonald partition was introduced.

The sampler is based on the direct sequential sampler from the A-hypergeometric distri-

bution associated with monomial curves.

As a statistical application, posterior sampling in a mixture model setting was discussed.

Beyond exchangeability has been attract interests of Bayesians, but probably outside of

partial exchangeability has not been discussed.

References can be found in Mano S (2018) Partitions, hypergeometric systems and Dirichlet

processes in statistics, Springer Briefs in Statistics, JSS Research Series in Statistics, Springer.
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