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1. Introduction

There has been a vast amount of published research on the use of statistical time
series analysis of macro-economic time series. One important feature of macroeco-
nomic time series, which is different from the standard time series analysis, is the fact
that the observed time series is an apparent mixture of non-stationary components
and stationary components. The second feature is the fact that the measurement
errors in economic time series play important roles because macro-economic data are
usually constructed from various sources including sample surveys in major official
statistics while the statistical time series analysis often ignores measurement errors.
There is yet third important issue that the sample size of macro-economic data is
rather small and we have 120, say, time series observations for each series when
we have quarterly data over 30 years. The quarterly GDP series, which has been
the most important data in macro-economy are published since 1994 by the cabinet
office of Japan, for instance. Since the sample size is small, it is important to use
an appropriate statistical procedure to extract information on trend and noise (or
measurement error) components in a systematic way from data.

In this study we will develop a new filtering method to estimate the hidden
states of random variables and to handle multiple time series data, and particularly

∗A joint work with Seisho Sato (University of Tokyo) and it is a preliminary memorandum. We
owe Akihiko Takahashi for a suggestion on our filtering method. The research has been supported
by JSPS-Grant JP17H02513.

†School of Potitical Science and Economics, Meiji University, Kanda-Surugadai 1-1, Chiyoda-ku
101-8301, Tokyo, JAPAN, naoto.kunitomo@gmail.com

1



to deal with small sample economic time series. Kunitomo and Sato (2017), and
Kunitomo, Sato and Kurisu (2018) have developed the separating information maxi-
mum likelihood (SIML) method for estimating the non-stationary errors-in-variables
models. They have discussed the asymptotic properties and finite sample proper-
ties of the estimation of unknown parameters. We utilize their results to solve the
filtering problem of hidden random variables, which gives a powerful new method
of handling macro-economic time series.

Kitagawa (2010) has discussed the standard statistical filtering methods already
known including the Kalman-filtering and the particle-filtering methods. Since (i)
these methods depend on the underlying distributions such as the Gaussian distri-
butions for the Kalman-filtering and (ii) the procedures essentially depend on the
dimension of state variables, there may be some difficulty to extend to the high-
dimension cases even when it is fixed, say 100. On the other hand , we can expect
that our method has some merits when we handle small sample economic times se-
ries with non-stationarity and seasonality with many variables because our method
does not depend on the specific distributions as well as the dimensions of random
variables. See Kunitomo, Awaya and Kurisu (2017) for a comparison of small sam-
ple properties of the ML and SIML methods. The most important feature of the
present procedure is that it can be applicable to small sample time series data with
large dimension. Also our new method has a solid mathematical and statistical
foundation.

2. Non-stationary Errors-in-variables models

Let yji be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =
1, · · · , p. We set yi = (y1i, · · · , ypi)

′
be a p× 1 vector and Yn = (y

′
i) (= (yij)) be an

n× p matrix of observations and denote y0 as the initial p× 1 vector. We estimate
the model when the underlying non-stationary trends xi (= (xji)) (i = 1, · · · , n),
but we have the vector of noise component v

′
i = (v1i, · · · , vpi), which are independent

of xi. We use the non-stationary errors-in-variables representation

yi = xi + vi (i = 1, · · · , n),(2.1)

where xi (i = 1, · · · , n) are a sequence of non-stationary I(1) process which satisfy

∆xi = (1− L)xi = v
(x)
i ,(2.2)

where v
(x)
i is a sequence of i.i.d. random vectors with E(v(x)

i ) = 0 and E(v(x)
i v

(x)′

i ) =
Σx. The random vectors vi (i = 1, · · · , n) are a sequence of i.i.d. random variables
with E(vi) = 0 and E(viv

′
i) = Σv.

We consider the situation when each pair of vectors ∆xi and vi are indepen-
dently, identically, and normally distributed (i.i.d.) as Np(0,Σx) and Np(0,Σv),
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respectively, and we have the observations of an n× p matrix Yn = (y
′
i) and set the

np× 1 random vector (y
′
1, · · · ,y

′
n)

′
. Given the initial condition y0, we have

vec(Yn) ∼ Nn×p

(
1n · y

′

0, In ⊗Σv +CnC
′

n ⊗Σx

)
,(2.3)

where 1
′
n = (1, · · · , 1) and

Cn =


1 0 · · · 0 0
1 1 0 · · · 0
1 1 1 · · · 0
1 · · · 1 1 0
1 · · · 1 1 1


n×n

.(2.4)

We use the K∗
n−transformation that from Yn to Zn (= (z

′
k)) by

Zn = K∗
n

(
Yn − Ȳ0

)
,K∗

n = PnC
−1
n ,(2.5)

where

C−1
n =


1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1


n×n

,(2.6)

and

Pn = (p
(n)
jk ) , p

(n)
jk =

√√√√ 2

n+ 1
2

cos
[

2π

2n+ 1
(k − 1

2
)(j − 1

2
)
]
.(2.7)

By using the spectral decomposition C−1
n C

′−1
n = PnDnP

′
n and Dn is a diagonal

matrix with the k-th element dk = 2[1− cos(π( 2k−1
2n+1

))] (k = 1, · · · , n) and we write

a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(2.8)

The separating information maximum likelihood (SIML) estimator of Σ̂x can be
defined by

Gm = Σ̂x,SIML =
1

mn

mn∑
k=1

zkz
′

k .(2.9)

3. SIML Filtering

Let an m× n choice matrix Jm = (Im,O), and let also n× p matrix

Z∗
n = J

′

mJmZn = J
′

mJmPnC
−1
n (Yn − Ȳ0) , Zn = PnC

−1
n (Yn − Ȳ0)(3.1)
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and an n× n matrix
P∗

n = J
′

mJmPn .(3.2)

We define Z∗∗
n = P∗′

nZ
∗
n = P

′
nZ

∗
n and then we construct an estimator of n× p hidden

state matrixXn by using the inverse transformation of Z∗
n (by deleting the estimated

noise parts) as
X̂n = CnP

∗′
nZ

∗
n .(3.3)

Then we have the relation of p× p matrices

Z∗∗′
n Z∗∗

n = Z∗′
nZ

∗
n(3.4)

and hence the p× p variance-covariance matrix of P
′
nZ

∗
n is numerically the same as

that of JmZn.

Let the [m+ (n−m)]× [m+ (n−m)] partitioned matrix

Pn =

(
P11 P12

P21 P22

)
.(3.5)

Then

PnJ
′

mJmPn =

(
P

′
11

P
′
12

)
(P11,P12) = In −

(
P

′
21

P
′
22

)
(P21,P22) .(3.6)

After some calculations, the (j, j
′
)-th element of Qn = PnJ

′
mJmPn (= (qj,j′ )) is

given by

qj,j =
2m

2n+ 1
+

1

2n+ 1

[
sin 2mπ

2n+1
(2j − 1)

sin π
2n+1

(2j − 1)

]
,

qi,j′ =
1

2n+ 1

sin 2mπ
2n+1

(j + j
′ − 1)

sin π
2n+1

(j + j ′ − 1)
+

sin 2mπ
2n+1

(j − j
′
)

sin π
2n+1

(j − j ′)

 (j ̸= J
′
) .

More generally, let an m2 × [m1 + m2 + (n − m1 − m2) choice matrix Jm1,m2,n =
(O, Im2 ,O), and let also n× p matrix

Z∗
n = J

′

m1,m2,n
Jm1,m2,nZn = J

′

m1,m2,n
Jm1,m2,nPnC

(s)−1
n (Yn − Ȳ0)(3.7)

and an n× n matrix
P∗∗

n = J
′

m1,m2,n
Jm1,m2,nPn ,

where C(s)
n = Cn ⊗ Is (s ≥ 2), m1 = [2n/s]− [m/2] and m2 = m. (s is the seasonal

frequency and we have used the seasonal differencing.)
Then we construct an estimator of n×p hidden (seasonal factor) matrix Sn by using
the Fourier-inversion of Z∗

n (by deleting other parts), which is given as

Ŝn = C(s)
n P∗∗′

n Z∗
n .(3.8)
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After some calculations, the (j, j
′
)-th element of Qn = PnJ

′
m1,m2,n

Jm1,m2,nPn (=
(qj,j′ )) is given by

qj,j =
2m2

2n+ 1
+

1

2n+ 1

sin 2(m1−1+m2)π
2n+1

(2j − 1)− sin 2(m1−1)π
2n+1

(2j − 1)

sin π
2n+1

(2j − 1)

 ,

qi,j′ =
1

2n+ 1

sin 2(m1−1+m2)π
2n+1

(j + j
′ − 1)− sin 2(m1−1)π

2n+1
(j + j

′ − 1)

sin π
2n+1

(j + j ′ − 1)

+
sin 2(m1−1+m2)π

2n+1
(j − j

′
)− sin 2(m1−1)π

2n+1
(j − j

′
)

sin π
2n+1

(j − j ′)

 (j ̸= j
′
) .

We note that when m1 = 1 and m2 = m, the resulting formulae become to those in
the standard case.

However, Sato (2018, a personal communication) has reported that the differencing
may be better than the seasonal differencing to estimate the state of seasonal factors.
This observation can be represented as

Z(s)
n = J

′

m1,m2,n
Jm1,m2,nZn = J

′

m1,m2,n
Jm1,m2,nPnC

−1
n (Yn − Ȳ0)(3.9)

and
Ŝn = CnP

∗∗′
n Z(s)

n .(3.10)

The resulting formura for MSE is the same except Cn instead of C(s)
n .

There may be some reason for this empirical observation. Since we have small
observations in macro-economic time series (, say 100), the finite sample properties
of estimation method should be important. The resulting formula is the same by
putting s = 1. When we had an infinite number of data, we could have recovered the
spectral density, which diverges at seasonal frequencies, and it helps us to identify
the seasonal factor. We need to investigate the effects of differencing, seasonal
differencing and periodogram in a systematic way. See Kunitomo (2018) for the
estimation problem of unknown structural parameters.

4. A Mathematical Foundation

At the first glance, the SIML filtering method might be seen as an ad-hoc statistical
procedure without any mathematical foundation. However, on the contrary, there
is a rather solid statistical foundation.
Let θjk =

2π
2n+1

(j − 1
2
)(k − 1

2
) ,

p
(n)
jk =

1√
2n+ 1

(eiθjk + e−iθjk)
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and we write

∆λz
(n)(λ

(n)
k ) =

n∑
j=1

p
(n)
jk r

(n)
j , r

(n)
j = yj − yj−1 ,(4.1)

which is actually a (real-valued) form of Fourier-transformation. Then ∆λz
(n)(λ

(n)
k ) (k =

1, · · · , n) are a sequence of (real-valued) form of transformations of data at the

frequency λ
(n)
k , which are the estimates of the underlying orthogonal incremental

process, say, z(λ).
For the development of statistical inferences, we have the next result by using

the CLT for dependent variables, which may be useful for applications.

Theorem 1 : Let rj (j = 1, · · · , n) be an ergodic stationary stochastic process with
Γ(h) = E(rjr

′
j−h) and

∞∑
h=0

∥Γ(h)∥ < ∞ .(4.2)

(i) Let ∆λz
(n)(λ

(n)
k ) =

∑n
j=1 p

(n)
jk r

(n)
j and r

(n)
j be an ergodic stationary sequence with

E [rj] = 0 and

f(λ) = Γ(0) +
∞∑
h=1

cos(2πhλ)[Γ(h) + Γ(−h)] ,(4.3)

is the positive definite and bounded (real-valued and symmetrized) spectral density

matrix. Also assume that λ
(n)
k → s, λ

(n)

k
′ → t and 0 < s < t < 1

2
. Then as n −→ ∞ ∆λz

(n)(λ
(n)
k )

∆λz
(n)(λ

(n)

k′
)

 w−→ N2p

[
0, [

f(s) 0
0 f(t)

]

]
.(4.4)

(ii) Let Zn(t)−Zn(s) =
∑[tn]

k=[sn]
1√
n

∑n
j=1 p

(n)
jk r

(n)
j for 0 < s < t < 1. Then as n −→ ∞

Zn(t)− Zn(s)
w−→ [

1

t− s

∫ t
2

2
2

f(λ)dλ]1/2[B(t)−B(s)] ,(4.5)

where B(t) is the vector of (standard) Brownian motions, which is the continuous
time vector process with independent increments.

It has been known that in the statistical time series analysis for a stationary
discrete (vector) process r∗k with the spectral distribution F, there exists a right-
continuous orthogonal increment (vector, complex-valued) process z∗(λ) (−1/2 ≤
λ ≤ 1/2) such that

r∗k =
∫
(−1/2,1/2]

ei2πikνdz∗(ν) (k = 1, · · · , n).(4.6)

(The topic here goes back to Doob (1953), but see Hannan (1971) or Brockwell and
Davis (1990).)
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The trend component and seasonal component of (real-valued) time series in our
setting can be defined by

r
(u)
k =

∫
(0,1/2]

cos(2πikν)h(cos(2πikν)dz(ν) (k = 1, · · · , n)(4.7)

for u = x or u = s, where h(·) is the indicator function of some frequencies around
zero (for trend) and seasonal frequency (for seasonality), respectively, and z(ν) 0 <
ν ≤ 1/2 is the right-continuous orthogonal increment (real-valued) process, which
is the limiting continuous process of (4.1) .

Since z(ν) is not observed with finite data, the (real-valued) estimate of r
(u)
k (i.e.

the hidden components of rk) from data can be represented as

r
(u,n)
k =

∫
(0,1/2]

cos(2πikν)hn(cos(2πikν))dz
(n)(ν) (at ν =

k

2n
, k = 1, · · · , n),(4.8)

where hn(·) is a measurable function and we have abused some notations.
There may be an interesting representation problem of (discrete time and con-

tinuous time) stationary processes and orthogonal incremental stochastic processes.

5. Model Selection

When we have estimates of the state variables xi (i = 1, · · · , n), the estimates of
noise components are v̂i = yi − x̂i (i = 1, . . . , n).
Then an estimated MSE of the one-step ahead prediction errors based on the SIML-
filtering is given by

ˆMSE(1) = Σ̂x + cΣ̂v .(5.1)

where c is a constant.
Then one may try to minimize the estimated one-step prediction MSE by choosing
an appropriate m.
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