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Abstract

We consider the equality test of high-dimensional covariance matrices under the strongly
spiked eigenvalue (SSE) model. We find the difference of covariance matrices by dividing
high-dimensional eigenspaces into the first eigenspace and the others. We create a new test
procedure on the basis of those high-dimensional eigenstructures. We precisely study the
influence of spiked eigenvalues on a test statistic and consider a bias correction so that the
proposed test procedure has a consistency property for the size.
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1 Introduction
In this paper, we consider the equality test of covariance matrices when the data dimension
is much larger than the sample size. Suppose we have two classes πi, i = 1, 2. We define
independent d × ni data matrices, X i = [xi1, ...,xini

], i = 1, 2, for πi, i = 1, 2. We assume
that xij, j = 1, ..., ni, are independent and identically distributed (i.i.d.) as a d-dimensional
distribution with a mean vector µi and covariance matrix Σi. We assume ni ≥ 4, i = 1, 2. The
eigen-decomposition of Σi is given by Σi = H iΛiH

T
i , where Λi = diag(λ1(i), ..., λd(i)) having

λ1(i) ≥ · · · ≥ λd(i)(≥ 0) and H i = [h1(i), ...,hd(i)] is an orthogonal matrix of the corresponding
eigenvectors. We assume λ2(i) > 0 for i = 1, 2, and λ1(i)s are of multiplicity one in the sense
that

lim inf
d→∞

λ1(i)/λ2(i) > 1 for i = 1, 2.

Let X i − [µi, ...,µi] = H iΛ
1/2
i Zi for i = 1, 2. Then, Zi is a d × ni sphered data matrix from

a distribution with the zero mean and identity covariance matrix. Let Zi = [z1(i), ..., zd(i)]
T and

zs(i) = (zs1(i), ..., zsni(i))
T , s = 1, ..., d, for i = 1, 2. Note that E(zqj(i)zsj(i)) = 0 (q ̸= s) and

Var(zs(i)) = Ini
, where Ini

denotes the ni-dimensional identity matrix. Also, note that if X i

is Gaussian, zsj(i)s are i.i.d. as the standard normal distribution, N(0, 1). We assume that the
fourth moments of each variable in Zi are uniformly bounded for i = 1, 2. Also, we assume the
following assumption:
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(A-i) E(z2qj(i)z
2
sj(i)) = 1, E(zqj(i)zsj(i)ztj(i)) = 0 and E(zqj(i)zsj(i)ztj(i)zuj(i)) = 0 for all

q ̸= s, t, u.

This kind of assumption was made by Aoshima and Yata [1], Bai and Saranadasa [3] and Chen
and Qin [4]. We note that (A-i) naturally holds when X i is Gaussian.

We consider the equality test of covariance matrices as follows:

H0 : Σ1 = Σ2 vs. H1 : Σ1 ̸= Σ2. (1.1)

Schott [11] gave a test procedure based on the Frobenius norm when d/ni → ci ∈ [0,∞).
Srivastava and Yanagihara [13] considered a test procedure by using a Moore-Penrose inverse
covariance matrix. Aoshima and Yata [1] gave a test procedure based on the quantity of tr(Σ1−
Σ2). They also discussed sample size determination so as to have a prespecified size and power
simultaneously. Li and Chen [10] considered the test problem by using the quantity of tr{(Σ1 −
Σ2)

2}. The above references discussed asymptotic properties of their test procedures when
d → ∞ and ni → ∞ under the following eigenvalue condition:

λ2
1(i)

tr(Σ2
i )

→ 0 as d → ∞ for i = 1, 2. (1.2)

Aoshima and Yata [2] called (1.2) the “non-strongly spiked eigenvalue (NSSE) model”. On the
other hand, Ishii, Yata and Aoshima [5] investigated asymptotic properties of the first principal
component and considered the test problem (1.1) when d → ∞ while nis are fixed under the
following eigenvalue condition:∑d

s=2 λ
2
s(i)

λ2
1(i)

= o(1) as d → ∞ for i = 1, 2. (1.3)

Note that (1.3) implies the conditions that λ2(i)/λ1(i) → 0 and λ2
1(i)/tr(Σ2

i ) → 1 as d → ∞. For
a spiked model as

λs(i) = as(i)d
αs(i) (s = 1, ..., ki) and λs(i) = cs(i) (s = ki + 1, ..., d) (1.4)

with positive (fixed) constants, as(i)s, cs(i)s and αs(i)s, and a positive (fixed) integer ki, the con-
dition (1.3) is met when α1(i) > 1/2 and α1(i) > α2(i). The condition (1.3) is generalized as

(A-ii) lim inf
d→∞

{ λ2
1(i)

tr(Σ2
i )

}
> 0 for i = 1 and 2.

For the spiked model (1.4), (A-ii) is met when α1(i) ≥ 1/2 for i = 1, 2. Aoshima and Yata [2]
called (A-ii) the “strongly spiked eigenvalue (SSE) model” and showed that high-dimensional
data often have the SSE model. They also provided a method to distinguish between the SSE
model and the NSSE model. See Section 5 in Aoshima and Yata [2]. Ishii [6, 7] considered
two-sample tests under (1.3) when d → ∞ while nis are fixed. The SSE model (A-ii) is quite
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difficult to handle because of the influence of strongly spiked noise. In order to handle huge
noise, Aoshima and Yata [2] created a data-transformation technique for two-sample tests which
transforms the SSE model to the NSSE model. In this paper, we give a new test procedure for
(1.1) under the SSE model (A-ii) by using a new approach which is different from the data-
transformation technique.

2 Performance of the earlier test statistic under the SSE model
In this section, we investigate the performance of the test statistic given by Li and Chen [10].

2.1 The earlier test procedure for (1.1)
For (1.1), Li and Chen [10] assumed that

tr(ΣiΣjΣkΣl) = o{tr(ΣiΣj)tr(ΣkΣl)} (2.1)

for any i, j, k and l ∈ {1, 2}. Note that (2.1) is one of the NSSE models. They proposed a test
statistic as follows:

Un1,n2 = An1 + An2 − 2tr (S1n1S2n2) ,

where Sini
is the sample covariance matrix having E(Sini

) = Σi and

Ani
=

1

ni(ni − 1)

ni∑
j ̸=k

(xT
ijxik)

2 − 2

ni(ni − 1)(ni − 2)

ni∑
j ̸=k ̸=l

xT
ikxijx

T
ijxil

+
1

ni(ni − 1)(ni − 2)(ni − 3)

ni∑
j ̸=k ̸=l ̸=l′

xT
ijxikx

T
ilxil′ .

Note that Un1,n2 is an unbiased estimator of ||Σ1 −Σ2||2F = tr{(Σ1 −Σ2)
2}(= ∆, say). Let

m = min{d, nmin}, where nmin = min{n1, n2}. (2.2)

In this paper, we consider the divergence condition as

d → ∞, n1 → ∞ and n2 → ∞,

which is equivalent to m → ∞. Note that

Var(Un1,n2) =
2∑

i=1

(
4tr(Σ2

i )
2

n2
i

{1 + o(1)}+O
( tr
{(

Σi(Σ1 −Σ2)
)2}

ni

))
+

8tr{(Σ1Σ2)
2}

n1n2

(2.3)

as m → ∞ under (A-i), so that

Var(Un1,n2) = (2tr(Σ2
1)/n1 + 2tr(Σ2

2)/n2)
2{1 + o(1)} under H0.
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See Section 2 in Li and Chen [10] for the details. Let

TLC =
Un1,n2

2An1/n2 + 2An2/n1

.

They showed that
TLC ⇒ N(0, 1) as m → ∞

under H0, (2.1) and some regularity conditions. Here, “ ⇒ ” denotes the convergence in dis-
tribution and N(0, 1) denotes a random variable distributed as the standard normal distribution.
We note that TLC converges to N(0, 1) under the NSSE model, however does not so under the
SSE model. In order to overcome this inconvenience, we first modify TLC under (1.3) in Section
2.2 and newly construct a different test procedure for the SSE model (A-ii) in Section 3.

2.2 Modification of TLC under a SSE model
We assume (1.3) as a SSE model. Let

K = 2λ2
1(1)/n1 + 2λ2

1(2)/n2.

From (2.3), we note that Var(Un1,n2) = K2{1+ o(1)} as m → ∞ under (A-i), (1.3) and H0. We
assume the following assumption for the first (normalized) principal component (PC) scores:

(A-iii) z1j(i), j = 1, ..., ni, are i.i.d. as N(0, 1) for i = 1, 2.

We note that (A-iii) is a Gaussian assumption only for the first PC scores. Thus, (A-iii) is much
milder than the Gaussian assumption for X i because zsj(i), j = 1, ..., ni; s = 1, ..., d, are i.i.d.
as N(0, 1) when X i is Gaussian. Note that E{(z21j(i) − 1)2} = 2 for all i, j, under (A-iii). Let

W =

n1∑
j=1

λ1(1)(z
2
1j(1) − 1)

n1

−
n2∑
k=1

λ1(2)(z
2
1k(2) − 1)

n2

.

Then, we have that Var(W ) = E(W 2) = K. We have the following result.

Lemma 2.1 (Ishii, Yata and Aoshima [8]). Under (A-i), (A-iii) and (1.3), it holds that as m → ∞

Un1,n2 =
(
W + λ1(1) − λ1(2)

)2
+∆− (λ1(1) − λ1(2))

2 −K + op(K)

+Op[n
1/2
max{1− (hT

1(1)h1(2))
2}K] + op{(K∆)1/2},

where nmax = max{n1, n2}.

From Lemma 2.1, under (A-i), (A-iii), (1.3) and H0, it holds that as m → ∞

Un1,n2 = W 2 −K + op(K).

Let Tn1,n2 = Un1,n2/K + 1. Then, we have an asymptotic distribution of Tn1,n2 under H0.
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Proposition 2.1 (Ishii, Yata and Aoshima [8]). Under (A-i), (A-iii), (1.3) and H0, it holds that
Tn1,n2 ⇒ χ2

1 as m → ∞. Here, χ2
ν denotes a random variable distributed as a χ2 distribution

with ν degrees of freedom.

Since λ1(i)s are unknown, we need to estimate them. It is well known that the sample eigen-
values involve too much noise for high-dimensional data. See Ishii, Yata and Aoshima [5], Jung
and Marron [9] and Shen et al. [12] for the details. We consider estimating λ1(i)s by using
the noise-reduction (NR) methodology given by Yata and Aoshima [15]. Let X i = [x̄i, ..., x̄i]
and x̄i = n−1

i

∑ni

j=1 xij for i = 1, 2. We denote the dual matrix of Sini
by SiD and define its

eigen-decomposition as follows:

SiD = (ni − 1)−1(X i −X i)
T (X i −X i) =

ni−1∑
s=1

λ̂s(i)ûs(i)û
T
s(i), (2.4)

where λ̂1(i) ≥ · · · ≥ λ̂ni−1(i) (≥ 0) and ûs(i) denotes a unit eigenvector corresponding to the
eigenvalue λ̂s(i). Note that Sini

and SiD share non-zero eigenvalues. If one uses the NR method,
λj(i)s are estimated by

λ̃j(i) = λ̂j(i) −
tr(SiD)−

∑j
s=1 λ̂s(i)

ni − 1− j
(j = 1, ..., ni − 2). (2.5)

Note that λ̃j(i) ≥ 0 w.p.1 for j = 1, ..., ni − 2. See Appendix A for asymptotic properties of
λ̃1(i)s. Let

T̃n1,n2 = Un1,n2/K̃ + 1 with K̃ = 2λ̃2
1(1)/n1 + 2λ̃2

1(2)/n2.

Then, we have the following result.

Theorem 2.1 (Ishii, Yata and Aoshima [8]). Under (A-i), (A-iii), (1.3) and H0, it holds that as
m → ∞

T̃n1,n2 ⇒ χ2
1.

We consider testing (1.1) for a given α ∈ (0, 1/2) by

rejecting H0 ⇐⇒ T̃n1,n2 ≥ c1(α), (2.6)

where c1(α) denotes the upper α point of χ2
1. Then, under (A-i), (A-iii) and (1.3), it holds that

as m → ∞
size = α + o(1).

Although (1.3) is one of the SSE models, it is limited in actual data analyses. In Section 3,
we give a new test procedure in general under the SSE model (A-ii).
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3 New test procedure for the SSE model
In this section, we construct a new test procedure under the SSE model (A-ii). From the fact that
tr(Σ1⋆Σ2⋆) ≤ {tr(Σ2

1⋆)tr(Σ
2
2⋆)}1/2 ≤ tr(Σ2

1⋆) + tr(Σ2
2⋆), we note that hT

1(i)Σi′⋆h1(i) = o(λ1(i′))
for i ̸= i′ and ||Σ1⋆ − Σ2⋆||2F = o(λ2

1(1) + λ2
1(2)) as d → ∞ under (1.3). Then, it holds that as

d → ∞

∆ = (λ1(1) − λ1(2))
2 + 2λ1(1)λ1(2){1− (hT

1(1)h1(2))
2}+ o(λ2

1(1) + λ2
1(2)). (3.1)

We consider (3.1) as a starting point to handle the SSE model (A-ii). We give a test statistic
based on (3.1) and show that it holds an asymptotic null distribution even when (1.3) is not met.
By using the NR method, we estimate the first eigenvector as

h̃1(i) = {(ni − 1)λ̃1(i)}−1/2(X i −X i)û1(i)

for i = 1, 2, where û1(i) is given in (2.4). Note that h̃1(i) = (λ̂1(i)/λ̃1(i))
1/2ĥ1(i), where ĥ1(i) is

the first (unit) eigenvector of Sini
. Let δi = tr(Σ2

i⋆), i = 1, 2. From Lemma A.1 in Appendix A,
it holds that as m → ∞

|h̃T

1(1)h̃1(2)| = 1 +Op

(
δ
1/2
1

n1λ1(1)

+
δ
1/2
2

n2λ1(2)

)
= 1 + op(n

−1
min) (3.2)

under (A-i), (1.3) and H0, where nmin and m are given in (2.2). Then, from (3.1) we consider
the following test statistic:

TNR =
(λ̃1(1) − λ̃1(2))

2 + 2λ̃1(1)λ̃1(2)

{
1−min{1, (h̃T

1(1)h̃1(2))
2}
}∑2

i=1 2λ̃
2
1(i)/(ni − 1)

.

From Lemma A.1 and (3.2), it holds that as m → ∞

λ̃1(1) − λ̃1(2){∑2
i=1 2λ

2
1(i)/(ni − 1)

}1/2
=

W

K1/2
+ op(1) ⇒ N(0, 1),

and
λ̃1(1)λ̃1(2)

{
1−min{1, (h̃T

1(1)h̃1(2))
2}
}{∑2

i=1 2λ
2
1(i)/(ni − 1)

} = op(1) (3.3)

under (A-i), (A-iii), (1.3) and H0. Then, we have the following result.

Proposition 3.1 (Ishii, Yata and Aoshima [8]). Under (A-i), (A-iii), (1.3) and H0, it holds that
TNR ⇒ χ2

1 as m → ∞.

From (3.3) it holds that TNR = W 2/K + op(1) as m → ∞ under (A-i), (A-iii), (1.3) and H0.
Thus, from Lemmas 2.1 and A.1, TNR is asymptotically equivalent to T̃n1,n2 under (1.3) and H0.
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However, as for TNR, one can consider it in general under the SSE model (A-ii) as follows: If
lim supd→∞ λ1(i)/λ2(i) < ∞ for some i, it holds from Lemma A.1 that

1−min{1, (h̃T

1(1)h̃1(2))
2} = Op(n

−1
min) (3.4)

under H0, (A-i) and (A-ii), so that (3.3) does not hold. Thus, one cannot ignore the bias of
1 − min{1, (h̃T

1(1)h̃1(2))
2} in TNR especially when λ2(i) is close to λ1(i). In order to reduce the

bias, we consider modifying TNR. Let η = δ
1/2
1 /λ1(1) + δ

1/2
2 /λ1(2). From Lemma A.1, it follows

that {
1−min{1, (h̃T

1(1)h̃1(2))
2}
}1+η

= op(n
−1
min) (3.5)

under H0, (A-i) and (A-ii). By using the cross-data-matrix (CDM) method by Yata and Aoshima
[14], we have a consistent estimator of δi, δ̂i. See (3.6) in Appendix A for the details. We
estimate η by

η̂ = δ̂
1/2
1 /λ̃1(1) + δ̂

1/2
2 /λ̃1(2).

We provide the following new test statistic:

T ⋆
NR =

(λ̃1(1) − λ̃1(2))
2 + 2λ̃1(1)λ̃1(2){1−min{1, (h̃T

1(1)h̃1(2))
2}}1+η̂∑2

i=1 2λ̃
2
1(i)/(ni − 1)

.

Then, we have the following result.

Proposition 3.2 (Ishii, Yata and Aoshima [8]). Under (A-i) to (A-iii) and H0, it holds that
T ⋆

NR ⇒ χ2
1 as m → ∞.

Note that one can use T ⋆
NR even when (1.3) is not met.

Appendix A

Estimation of several parameters in the new test procedure
In this section, we give asymptotic properties of the estimators for the parameters in the new test
procedure.

A.1 Estimation of λ1(i) and h1(i)

Let s1(i) =
∑ni

j=1(z1j(i) − z̄1(i))
2/(ni − 1) for i = 1, 2, where z̄1(i) = n−1

i

∑ni

j=1 z1j(i).
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Lemma A.1 (Ishii, Yata and Aoshima [8]). Under (A-i) and (A-ii), it holds that as m → ∞

λ̃1(i)

λ1(i)

= s1(i) +Op

(
δ
1/2
i /(niλ1(i))

)
= 1 + op(1) for i = 1, 2, and

|h̃T

1(1)h̃1(2)| = |hT
1(1)h1(2)|+Op

(
δ
1/2
1

n1λ1(1)

+
δ
1/2
2

n2λ1(2)

)
+Op

(
{1− (hT

1(1)h1(2))
2}1/2/n1/2

min

)
= |hT

1(1)h1(2)|+ op(1).

In addition, under (A-i) to (A-iii), it holds that as m → ∞√
ni − 1

2

(
λ̃1(i)

λ1(i)

− 1

)
⇒ N(0, 1).

A.2 Estimation of δi
First, we consider estimation of δi. Aoshima and Yata [2] gave an estimator of δi by using the
CDM method: Let ni1 = ⌈ni/2⌉ and ni2 = ni − ni1, where ⌈x⌉ denotes the smallest integer
≥ x. Let X i1 = [xi1, ...,xini1

] and X i2 = [xini1+1, ...,xini
]. We define

SiC = {(ni1 − 1)(ni2 − 1)}−1/2(X i1 −X i1)
T (X i2 −X i2),

where X ij = [xij, ...,xij] with xi1 =
∑ni1

l=1 xil/ni1 and xi2 =
∑ni

l=ni1+1 xil/ni2. We estimate
λj(i) by the j-th singular value, λ́j(i), of SiC , where λ́1(i) ≥ · · · ≥ λ́ni(2)−1(i) ≥ 0. Also, we
estimate tr(Σ2

i ) by tr(SiCS
T
iC). Note that E{tr(SiCS

T
iC)} = tr(Σ2

i ). Finally, δi is estimated by

δ̂i = tr(SiCS
T
iC)− λ́2

1(i). (3.6)

From Lemma S2.1 in Aoshima and Yata [2], we have the following result.

Lemma A.2 (Aoshima and Yata [2]). Under (A-i) and (A-ii), it holds that δ̂i/δi = 1 + op(1) as
m → ∞ for i = 1, 2.
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