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Robust point set registration using a statistical shape model
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Abstract. Point set registration is a problem of finding point-by-point correspondences between two point sets,
each of which characterizes an object shape. Many of the state-of-the-art algorithms to solve the problem are
based on the assumption of the smooth displacement field, which enforces neighbor points to move coherently.
The assumption is reasonable in many situations and the algorithms often solve point set registration problems
elegantly. However, these algorithms often fail if the assumption is inappropriate. In the case of registering two
hand poses, for example, moves of the index finger and the middle finger tend to be negatively correlated. A
key to overcoming the issue of the smooth displacement field is the use of prior knowledge of object geometry.
If we know in advance the fact that the index and middle fingers tend to move with negative correlation, the
issue can be avoided by incorporating the information into the registration algorithm to be designed. In this
paper, we propose a novel point set registration algorithm based on a statistical shape model, a supervised
learning technique for learning shape variations of an object. An effectiveness of the algorithm is presented
through comparisons with the state-of-the-art point set registration algorithms using the data of human hand
poses with various types of artifacts.

1 Introduction

Point matching is a problem of finding point-by-point correspondence between two point sets where each of
point sets characterizes a geometry of an object. Finding such geometrical correspondence of point sets are
being actively studied in the field of the image recognition and the computer vision. One major class of the
point matching problems is point set registration, the problem of finding a transformation between two point
sets including point-by-point correspondence. The point set registration problems are roughly classified into
two classes according to transformation models: rigid and non-rigid transformations. The rigid transformation
model is defined as a linear map which preserves relative positions of points in a floating point set, i.e. scaling,
rotation, and translation. The rigid point set registration problem is a relatively simple problem and has been
intensively studied [2, 1, 23, 7, 18]. The non-rigid registration is a more complex problem that transforms a
shape of an object geometry. Typical transformation models used for the point set registration problems are
the thin-plate spline [5, 6, 14, 3, 27] and the radial basis function [21, 20, 16, 17]. These methods are differently
classified according to definitions of the point set registration problems: energy minimization [5, 6, 27], and
probabilistic density estimation with Gaussian mixture model [21, 20, 14, 3, 16, 17].

One key to the success of these registration methods is a robustness for outliers, points irrelevant to the
true object geometry. There are several approaches to deal with outliers, statistical analysis for distances
of correspondent points [28, 11, 25], soft assignments [22, 6], trimming point sets through iterative random
sampling [4], kernel correlation [26], explicit probabilistic modeling of outliers [21, 20, 16, 17], the use of a
robust estimator: the Lo E estimator [14] and a scaled Geman-McClure estimator [29]. The second key to the
success of the registration methods is an assumption of the smooth displacement field, which enforces neighbor
points to move coherently. The smoothness of the displacement field is imposed by a regularization technique
defined as a penalty term for energy minimization [5, 6, 27] and for log-likelihood functions [21, 20, 14, 3, 16,
17]. Owing to the assumption of the smooth displacement field, such non-rigid registration algorithms find
transformations with sufficient global flexibility while local topology of a point set is preserved. The smoothness
of the displacement field, however, becomes a significant drawback if the assumption of the true displacement
field is not smooth. In the case of matching two hand shapes, for example, tips of the index finger and the
middle finger are located closely whereas they usually move with a negative correlation.

To address the issue of the smooth displacement field, a promising direction is the use of prior knowledge
of object geometry. If we know the fact that the index and middle fingers tend to move with a negative



correlation in advance, the issue is expected to be relaxed by incorporating the information into registration
algorithms to be designed. One approach to incorporating such prior information is the use of a kinematic
motion for articulated objects such as human body [19, 13, 9, 8. These methods show promising results,
but they cannot be applied to objects with no kinematics. The second approach to overcoming the issue
of the smooth displacement field is the use of partial correspondence across two point sets [15, 10]. These
methods also show promising results, but the better performance is not expected if the partial correspondence
is not available. The third approach to addressing the issue of the smooth displacement field. One candidate
of such supervised learning techniques is a statistical shape model [24, 12] which describes the mean shape
and statistical variation of geometrical objects. Shape variations represented by statistical shape models are
constructed from shape statistics of landmark displacements which are usually obtained manually. Therefore,
moves of neighbor landmarks are not assumed to be correlated, and moves of distant landmarks are allowed to
be dependent, unlike the smooth displacement field. Also, statistical shape models do not require any physical
models such as object kinematics.

Contribution of this work

In this article, we propose a novel non-rigid point set registration algorithm, which we call dependent landmark
drift. The problem we aim at solving is point set registration problems under the condition that (i) complete
point-by-point correspondence across multiple point sets are available as a set of training data, and (ii) no
partial correspondence across two point sets to be registered is available. The proposed algorithm is based on
a Gaussian mixture model with robustness for outliers and a statistical shape model, a supervised learning
technique for learning shape variations of an object. The statistical shape model is constructed from a set of
training data and does not require the assumption of the smooth displacement field. Therefore, the difficulty
in the registration of non-coherent neighbor points is addressed without losing robustness for outliers. The
proposed algorithm is specialized for registration problems between the mean shape and a point set, and
works much more efficiently especially if the assumption of the smooth displacement field is inappropriate.
An effectiveness of the proposed algorithm will be presented through the comparison with the state-of-the-art
point set registration algorithms.

2 Methods

In this section, we propose a novel point set registration algorithm based on a Gaussian mixture model with a
statistical shape model. we first describe a definition of a statistical shape model, and then introduce a GMM-
based point set registration technique [20]. Finally, a novel algorithm which addresses the issue of non-coherent
neighbor points is presented.

2.1 Statistical shape model

we begin with definitions of a landmark and a shape required to define a statistical shape model. To obtain shape
statistics from multiple geometric objects, it is essential to define correspondent points across the geometric
objects. These points of correspondence are called landmarks. A shape is typically defined as a set of landmarks
for one of the geometric objects with scale, rotation and translation effects removed [24]. Unlike this definition,
we define a shape simply as a set of landmarks, that is, scale, rotation, and translation effects are not essentially
removed for the purpose of point set registration. Note here that a point set and a shape are distinguished
from each other in that (1) shapes are composed of the same number of points whereas the number of points in
a point set is generally different from other point sets, and (2) points in shapes are correspondent across all the
shapes whereas points in multiple point sets are not correspondent. Statistical shape models, are constructed
from training shapes, i.e. multiple point sets with point-by-point correspondence.

Definition of a statistical shape model

Statistical shape model (SSM) is an expression of a geometrical shape and its statistical variations for an object.
Since definitions of SSMs diverge according to the aim of applications or the method of construction [12], we
introduce a definition based on the principal component analysis (PCA) [24] which is sufficient to describe the
algorithm to be proposed. Suppose a shape is composed of M landmarks (v1,---,vpr), each of which lie in a



D-dimensional space. Then, the shape is represented as a vector v = (vI, .- 0T )T € RMP, The PCA-based

statistical shape model is defined as follows

K

V:U—&—szhk—kw, (1)
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where u = (uf--- Ju¥,)T € RMP is the mean shape, hy € RMP is the kth leading shape variation, z; € R is
the kth weight corresponding to the kth shape variation, K is the number of shape variations, and w € RMP is
a residual vector. To separate shape variations to a maximum extent, shape variations hy, - -- , hjy; are assumed
to satisfy the orthonormality condition h!h; = §;; where d;; is Kronecker’s delta.

Estimation of shape parameters

The shape parameters u, hy, and, z; are unknown and should be estimated from multiple shapes vy, ,vp.
The mean shape u is simply estimated as the average of sample shapes. Suppose C € RMPXMD ig 5 ghape
covariance matrix defined as
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where v is the sample average of the shapes vi,---,vp. The covariance matrix C represents statistical
dependencies for landmark displacements. The kth shape variation hy and the corresponding weight z; in the
equation (1) can be estimated as the kth eigenvector and the kth eigenvalue of C, respectively.

2.2 Gaussian mixture model for point set registration

we summarize a Gaussian mixture modeling approach for solving point set registration problems proposed
by Myronenko et al. [20] since this approach is the basis of the algorithm to be proposed. They defined a
registration problem of two point sets as a problem of probabilistic density estimation where one point set is
composed of centroids for a Gaussian mixture model (GMM) and the other point set is samples generated from
the GMM. Suppose z,, € RP and y; € RP are the nth element in a target point set X = {x1,---, 2y} and the
Ith element in a floating point set Y = {y1, -+ ,yr}, respectively. Their definition of the mixture model for
the alignment of the two point sets X and Y is

p(xn; @) =w 'poutlier(xn 1 — UJ Zp $n|l @ (3)

where O is a set of parameters of the mixture model, w is a Bernoulli probability for outliers, and poutiier
is a distribution of outliers. Prior distributions of inliers p(l) and outliers poutiier () are defined as uniform
distributions p(l) = 1/L and p(z,) = 1/N, respectively. The inlier distribution p(x,|l;©) is defined as a
Gaussian distribution

p(zn|l;0) =

1 |20 — T (315 0)|”
(2ro?)72 7P ( a 202l ) )

where o2 is the variance of the Gaussian distribution, 7 (y;;6) is a transformation model for the floating point
y; with a set of parameters 6, and © = (6, 0?) is a set of parameters of the GMM. The set of parameters © can
be estimated by the maximum likelihood estimation [20]. Since the analytic solution of the maximum likelihood
estimation for the GMM, defined as the equations (3) and (4), is not available, the EM algorithm is used for
searching a local maximum of the likelihood function. The EM algorithm iteratively improves a solution by
updating a lower bound of a log-likelihood function, called Q-function. Given a parameter set © = (52, ), the
Q@-function of the GMM is derived as

_ NpD 1 L& )
Q(0,0) = ——logo® + 55 > > " plllwn, O)lln — T(wi; 0)]1*. (5)
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where Np = Zn 1 Zz L, p(l|zn, ©) < N is the effective number of matching points and p(I|z,,,©) denotes a
posterior probability of the mixture component. This posterior probability can be calculated as

(1 _ w)p(x7L|l; (:))

T —.
wy + (1 —w) g Xy, p(ana|l’; ©)
Therefore, a solution of the point set registration problem is obtained by iterating the following procedure:

i) updating the posterior probabilit l|zn: ©), (ii) finding © which maximizes the Q-function for @ iven
(i) updating the p p y p(l|7n; ©), g g

the current parameter set ©, and (iii) replacing the current parameter set © with the maximizer O of the
Q-function. This procedure is iterated until a suitable convergence criterion is satisfied.

p(l|zn;©) = (6)

2.3 Dependent landmark drift

We here propose a novel registration algorithm specialized for registering the mean shape and a point set, which
we call dependent landmark drift (DLD). The algorithm is based on the same GMM framework as the CPD
algorithm. A main difference between CPD and DLD is the difinition of transformation models for a floating
point set: CPD uses a motion coherence while DLD uses a statistical shape model. We first describe that
statistical shape models can be utilized as a transformation model of the GMM-based point set registration.
Suppose A € RP is the subvector of the kth shape variation hy, corresponding to the mth landmark u,, € RP
in the mean shape u € RMP. We also denote K shape variation vectors corresponding to the mth landmark
by a D-by-K matrix H,, = (hm1, -, hmi) € RP*E. Then, the statistical shape model (1) is denoted by a
point-by-point transformation model suitable for point set registration problems:

VUm = TH,, (Um; 2) + W,
= Uy, + Hpz + W, (7)

where z = (21, ,2K) € RE is a weight vector for K shape variations, and w,, € R is a subvector of the
residual vector w corresponding to the landmark wu,,. A merit of using statistical shape models for point set
registration problems is that moves of landmarks are estimated based on statistical dependency of landmark
displacements without the assumption of the smooth displacement field. That is, neighbor landmarks are not
enforced to be coherent and moves of distant landmarks are allowed to be dependent. Therefore, we call the
algorithm dependent landmark drift. We note here that the affine transformation 7, is much more flexible
than that of the affine CPD since all of the transformation matrices Hy,---, and H); are identical for the affine
CPD and are not identical for the statistical shape models.

We then derive the DLD algorithm for solving a point set registration problem for a point set X =
{x1,+ ,zn} and the mean shape U = {uy, - ,u}, also denoted by single vector notation u = (uf, -+, u%,)7
€ RMP Based on the GMM framework, we set the mean shape U as the floating points and set a statistical
shape model Ty, (um;2) trained in advance as a transformation model. Then, we define the Q-function of the

point set registration problem as

Q(6,0) =

D N M
logo® + 5~ ZZ Prunlln = (um + Hin2)| > 47211 (8)

where © = (z,02), pmn = p(m|2,;0), and Np = Zn 1 Zm 1 Pmn- A regularization term was added for z
in order to avoid searching extreme shapes where v > 0 is a parameter which controls the search space of
z, meaning that the resulting transformed shape becomes closer to the mean shape as ~ increases. Since the
analytic solution of the simultaneous maximization of the Q-function for z and o2 is not available, we optimize

z and o? separately, likely to the CPD algorithm. By optimizing z given o2, or optimizing o2 given z, we have

N M ., N M
zZ= { Z Z pmn(Hg;LHm + 'YI)} { Z Z pman;L(xn - um)} (9)
n=1m=1 n=1m=1
N M
N 5 SN ponllan — (um + Hu2)| . (10)
n=1m=1

Therefore, a solution of the point set registration problem is obtained by iterating the following procedure:

(i) updating the posterior probability p(m|z,;©), (ii) finding © which maximizes Q-function for © given the
current parameter set ©, and (iii) replacing the current parameter set © with the maximizer O of the Q-function.



3 Experiments

In this section, we evaluate registration performance of the proposed algorithm through comparisons with the
state-of-the-art point set registration algorithms, CPD [20] and TPS-RPM [5]. We used the IMM hand data
[25]. This data includes 40 shapes, and each of the shapes was obtained from a 2D image of a human hand by
placing 56 landmarks manually. That is, all of the points included in the 40 shapes are correspondent across
all the shapes. As a pre-alignment, we translated each of the 40 hand poses as follows: the average point in a
hand pose becomes the origin in the two-dimensional coordinate space.

To evaluate registration performances of DLD more precisely, we compared DLD, CPD, and TPS-RPM
using the same IMM hand data under various conditions. As the true target poses to be estimated, we used
three hand poses, No.6, No.9 and No.38 which are clearly different poses from the mean hand, shown in the
top row of Figure 1. As a set of training data for DLD, we used 39 hand poses with each target hand pose
removed from all the 40 hand poses. As in the above demonstration, we generated the four types of target
data for the three hand poses: (a) 20-times replication of target points with dispersion, (b) random deletion
of target points, (c¢) addition of outliers which follows uniform distributions, and (d) rotation of the whole
shape. In generating the four types of target data, we changed parameters of the data generation: (a) standard
deviation of the Gaussian distribution for replicating target points, (b) missing rate, (c) signal-to-noise ratio,
and (d) rotation angle. To repeat experiments and reduce an influence of the randomness on the registration
performance, target point sets were generated 20 times for (a), (b) and (c) in the same setting. For (d), a single
set of target points was generated for each rotation angle since the randomness does not exist for the rotation.
DLD, CPD, and TPS-RPM were applied to each target data, and a registration accuracy was calculated for
each target data. For the target data (a), (b), and (c), averages and standard errors of registration accuracy
were calculated. The registration accuracy was defined as the rate of the correct matching between a true target
pose and a deformed mean hand after registration. Here, the point-by-point correspondence was estimated by
using the nearest-neighbor matching. We used the default parameters for CPD and TPS-RPM, and we fixed
w=0.9 and K = 10 and changed the regularization parameter v to 1072,10~4, and 10~° for DLD.

The second row in Figure 1 shows the results of the comparison for the target hand poses with replicated
target points. The z-axis represents standard deviation for replicating target points while the y-axis regis-
tration accuracy. For all the three target poses, The registration performance of DLD was insensitive to the
regularization parameter . For hand No.6, DLD and CPD worked comparatively whereas DLD outperformed
CPD and TPS-RPM for hand No.9 and hand No.38 for almost all cases.

The results for target poses with random missing points are shown in the third row of Figure 1. The
x-axis represents the missing rate, and the y-axis represents the registration accuracy. DLD with v = 1074
worked most stable for all the hand poses while DLD with v = 1073,107° was less accurate than CPD in
some cases, especially for the high missing rate. The registration accuracy of DLD with v = 107° rapidly
decreased for all of the target poses in comparison with DLD with v = 1072,10~* as the missing rate became
large. This rapid decrease in registration accuracy suggests that shape prior information is insufficient to
impute missing regions. In other words, missing region can be reasonably imputed by shape prior information
if the regularization parameter v was appropriately chosen. DLD with v = 1073 was less accurate than DLD
with v = 1074,107° for low missing rate, suggesting that large v sometimes becomes an obstacle to accurate
registration.

The fourth row in Figure 1 shows the results for target poses with outliers which follows a two-dimensional
uniform distribution with z; € [—0.6,0.6] and x5 € [-0.6,0.6]. The z-axis of each figure represents signal-to-
noise ratio, and the y-axis represents registration accuracy. DLD achieved the best registration performance in
many cases, showing a robustness of DLD for outliers. As with cases of random missing points, an importance
of the regularization parameter « can be observed. DLD with v = 1073 tends to be less accurate than DLD
with v = 1074,107° for low signal-to-noise ratio while the decrease in registration performance of DLD with
v = 1073 was relatively small for high signal-to-noise ratio.

The fifth row in Figure 1 shows the results for rotated target poses. The z-axis and the y-axis represent
rotation angle and registration accuracy, respectively. For these data, registration accuracy of TPS-RPM were
considerably stable and were not affected by rotation angles at least in range [—7 /3, 7/3] for all the three target
poses. For the rotation, DLD was less robust than TPS-RPM and was comparative with CPD, but achieved
the best registration performance for relatively low rotation angles.
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Figure 1: Comparisons of registration performance for DLD, CPD, and TPS-RPM.



4 Conclusion

Many of the state-of-the-art point set registration algorithms are based on the assumption of the smooth
displacement field, meaning that moves of neighbor points in a floating point set are correlated, and local
geometry of the point set is preserved. Owing to the assumption, registration problems are elegantly solved by
these algorithms in many cases. However, these algorithms often fail to register two point sets if the assumption
is inappropriate. For example, in a case of registering two hand poses, points in the index finger and the middle
finger tend not to be correlated.

A key to overcoming this issue is the use of supervised learning techniques. If we know in advance the fact
that moves of the index finger and the middle finger are negatively correlated, we do not have to rely on the
smooth displacement field. Based on this idea, we proposed a novel point set registration algorithm using a
statistical shape model. The algorithm is specialized for registering the mean shape and a point set, and works
efficiently even if the assumption of the smooth displacement field is not expected.

To evaluate registration performance of the proposed algorithm, we compared the algorithm with CPD
and TPS-RPM using the IMM hand data with four types of modifications: replication of target points with
dispersion, random deletion of target points, addition of outliers, and rotation of the whole shape. The proposed
algorithm outperformed CPD and TPS-RPM in many cases for the data, showing a robustness of the proposed
algorithm for various types of point set registration problems.
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