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Abstract

The state space form is a useful framework for estimating unobserved state variables from some given
observations. The applications can be found in diverse areas of natural science and engineering such
as ecology, epidemiology, meteorology and economics and finance. The wind speeds and directions
have complex time series probability structures involving highly non-Gaussian and nonlinear transi-
tion. In this study, we consider a simulation-based inference using the sequential Monte Carlo methods
for computing the posterior distributions for the state variables given all available observations. We
propose an alternative approach that allows us to extend the methods of importance sampling distri-
butions incorporating with the class of circular Markov transition densities. The resulting methods
are compared with various resampling schemes with real data applications.
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1. Introduction

Circular (or directional) data refer to data recorded as points for which directions are measured,
typically in the fields of biology, geography, medicine, and astronomy. For such data, which are usually
expressed in terms of compass angles or pairs of sine and cosine variables, the beginning and end of the
scale in the domain coincide. Owing to this periodicity, analyzing circular data is challenging because5

traditional statistics are not meaningful, and may even be misleading when the particular definition of
the domain is ignored. Recent developments in circular data analysis using the statistical computing
software, R, are summarized in Pewsey et al. (2013). Although most circular data are in the form of
time series, little research has been carried out in the field of circular time series analysis compared
with the number of circular time series modeling approaches.10

In general, three main approaches are used to model circular time series. The first method is used
to obtain circular-valued random variables by wrapping; one example is the wrapped autoregressive
process of Breckling (2012). The second approach is based on a link function that maps a line onto a
circular domain, called a linked autoregressive moving average process. This model was proposed by
Fisher & Lee (1994). The last approach specifies the density of the conditional distribution, including15

the Markov process of Wehrly & Johnson (1980), Möbius transformation of Kato (2010), and hidden
Markov models of Holzmann et al. (2006). Abe et al. (2017) studied the circular Markov process of
Wehrly & Johnson (1980) and obtained theoretical circular autocorrelation structures under simple
model assumptions. According to their results, circular autocorrelations are determined by the mean
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resultant length of the underlying circular density of the process. Abe et al. (2018) considered the20

circular Markov processes whose concentration parameter could be time-varying.
Many data in directional time series applications display nonlinear features such as heteroskedas-

ticity and a nonlinear relationship between wind direction and speed. These features become more and
more relevant as the length of the observed time series increases and as the series itself is subject to
changes in the dynamic structure. In this paper, we address the circular process of Wehrly & Johnson25

(1980), which allows time-varying concentration parameters. The proposed model can incorporate the
time-varying autocorrelations of the observed circular time series. For this purpose, we introduce a
simple nonparametric regression model to the model parameter with time-varying observed exogenous
variables, which cause a reasonable fit of the observed time series. The proposed models are then used
to illustrate how wind direction and speed are related to the time-varying parameters. For further30

detail on the time series analysis of wind direction, see, for example, Breckling (2012), Ailliot et al.
(2006), and Fuentes et al. (2005).

In an applications in meteorology, bivariate data consists of wind speeds and directions are of-
ten modeled by using projected normal distributions (Mardia & Jupp (2009)). However, time series
modeling for such a bivariate dataset is not sufficiently studied in the literature. The dataset of wind35

speeds and directions are called cylindrical data because circular wind direction data are observed
along with linear wind speeds ones. Lagona et al. (2015) proposed a hidden Markov model for analyz-
ing cylindrical time series, and the proposed model can adequately explain circular–linear correlation,
and temporal autocorrelation of the observed data. The state space modeling using circular random
variable is considered in Mazumder & Bhattacharya (2017) and Kurz et al. (2016). In this study, we40

extend existing circular state-space models to cope with cylindrical time series.
Sequential Monte Carlo (SMC) methods are the set of simulation-based methods which provide

a convenient and attractive approach to computing posterior distributions. Over the last few years,
there has been a proliferation of scientific papers on SMC methods and their applications. Several
closely related algorithms, under the names of bootstrap filters, condensation, particle filters, Monte45

Carlo filters, interacting particle approximations and survival of the fittest, have appeared in several
research fields.

In general, the parameter estimation in Gaussian and linear state-space model can be done by
usual maximum likelihood estimation (MLE). However, the EM algorithm is used for estimating model
parameters in the state space model, and it turns out be more robust than the direct solution of the50

MLE. The recent development of EM algorithms in SMC methods are explained in Kantas et al. (2015).
The remainder of this paper is organized as follows. Section 2 introduces our non-linear and non-

Gaussian state- space models, then explains some of the model properties. Section 3 describes the
estimation procedures unknown model parameters by sequential Monte Carlo methods. Section 4
investigates maximum likelihood based inference by a Monte Carlo simulation. Section 5 presents the55

data analysis, which illustrates how wind speed and direction are related through the single latent
process. Finally, Section 6 concludes the study.

2. Models and Assumptions

The proposed model in this paper belongs to the Markovian, nonlinear, non-Gaussian state-space
models, which can be estimated via particle filters. Let {Θt}t∈Z, Θ ∈ S1, be a sequence of random
variables on a unit circle S1, and {ψ(αt)}t∈Z be the sequence of time varying concentration parameters
of the density function of {Θt} that are determined by suitable transformation of stationary autore-
gressive process {αt}. We consider the stationary Markov process on the circle defined in Wehrly &
Johnson (1980) with initial probability condition pη(θ0, α0) = fη(θ0, ψ(α0)) and

pη(θt|θ0, . . . θt−1, α0, . . . , αt−1)

=fη(θt|θt−1, ψ(αt−1)) = 2πgη[2π{Fη(θt;ψ(αt))− Fη(θt−1;ψ(αt−1))}],
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where fη(·) and gη(·) are arbitrary densities on the circle with unknown parameter vectors η. The
function ψ : R → Hρ is the map from R to suitable concentration parameter space Hρ of the circular60

density function g, where the density function g is often called as binding density, for example, Jones
et al. (2015). The circular probability distribution function F (·) is defined by

Fη(θ;ψ(αt)) =

∫ θ

0

fη(ξ;ψ(αt))dξ, θ ∈ [−π, π).

The unobserved states variable {αt}t∈Z, αt ∈ R is modeled with an autoregressive process with unit
variance as follows:

αt+1 = ϕαt + εt+1, εt ∼ i.i.d.N(0, 1/(1− ϕ2)),

where ϕ ∈ (−1, 1) is the autoregressive parameter. The latent process {αt} determines both the time65

series of wind speeds and the concentration parameter in circular Markov transition density. Let the
process {Vt}t∈Z be the time series of wind speed. We assume that the process of wind speed follows a
version of stochastic volatility models as:

Vt = β exp(α2
t /2)wt wt ∼ Gamma(s0, s

−1
0 )

where β > 0 and εv,t is the i.i.d. gamma random variables with shape and scale parameters s0 and s−1
0 ,

respectively, which has unit mean and variance s−1
0 . For details on the stochastic volatility models, we70

refer Taylor (1982) for simplest model, and Kim et al. (1998) for Markov chain Monte Carlo (MCMC)
methods.

Hereafter we consider the wrapped Cauchy distribution for the choice of the circular Markov tran-
sition densities f and g. Then, the time-varying concentration parameter ρt are given by the following
transformation of the latent process {αt} as75

ρt = ψ(αt) = {tanh(µρ + σραt) + 1}/2,

where µρ ∈ R and σρ ∈ R+ are the parameters of the link function which control the relationship
between wind speeds and concentration in wind directions via sigmoid function. The model parameter
vector η considered in this study is denoted by η = (µf , ρf , µg, ϕ, µρ, σρ, β, s0)

T , where µf and µg are
the location parameters in the marginal and binding distributions of wind directions, and ρf ∈ (0, 1)
is the concentration parameter of the marginal distribution of the wind direction. The corresponding80

parameter space becomes H = [0, 2π]2 × (0, 1)× (−1, 1)× R× R3
+ ⊂ R8.

Denote the state variable as xt = (Θt, αt)
⊤ and observation variable as yt = (Θt, Vt)

⊤. We
also denote by x0:t ≡ {x0, . . . ,xt} and y1:t ≡ {y1, . . . ,yt}, respectively, the latent variable and the
observations up to time t. We use the notation pη for the density function which depends on η.

The above defined models belong to the class of the nonlinear and non-Gaussian time series models85

as

xt+1 = ψη(xt,vt+1), yt = ϕη(xt,wt),

where {vt}t≥1 and {wt}t≥0 are independent sequences of independent random variables and (ψη, ϕη)
are a pair of nonlinear functions. These models are known as general state-space models as in, for
example, Doucet et al. (2001), Diaconis (2003), and Douc et al. (2014).

Our aim is to estimate recursively in time the posterior distribution pη(x0:t|y1:t), the filtering90

distribution pη(xt|y1:t) with their expectations as well as estimating unknown parameter vector η.

3. Particle Filtering and Smoothing

In estimating non-linear and non-Gaussian state space model, the particle filters are implemented
to approximate the sequence of the conditional distribution of the latent processes pη(x1:t|y1:n). This
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distribution is approximated by a large cloud of N random samples called particles in SMC. These par-95

ticles are propagated over time using an importance sampling and resampling mechanisms. The Monte
Carlo approximation for marginal and joint posterior distribution can be conducted in a recursive way
so called prediction and update stage.

The prediction stage forecasts the state variable at time t using observations up to time t−1. Using
prior density pη(xt−1|y1:t−1), the predictive density pη(xt|y1:t) can be obtained by100

pη(xt|y1:t−1) =

∫
pη(xt,xt−1|y1:t−1)dxt−1 =

∫
pη(xt|xt−1)pη(xt−1|y1:t−1)dxt−1,

where the transition density pη(xt|xt−1) is given by equation ().
With the new observation yt becomes available, the marginal posterior density is obtained by using

Bayes theorem as follows

pη(xt|y1:t) =
pη(yt|xt)pη(xt|y1:t−1)

pη(yt|y1:t−1)

∝pη(yt|xt)

∫
pη(xt|xt−1)pη(xt−1|y1:t−1)dxt−1

A Sequential Monte Carlo algorithm is a numerical approximation of the sequence of posterior den-
sities {pη(xt|y1:t)}. Instead of sampling from the transition density pη(xt|xt−1), we can approximate
it by sampling from a known importance density qη(xt|xt−1,y1:t), then the posterior density can be
expressed by using importance sampling distribution as

pη(xt|y1:t) ∝ pη(yt|xt)

∫
pη(xt|xt−1)

qη(xt|xt−1,y1:t)
qη(xt|xt−1,y1:t)pη(xt−1|y1:t−1)dxt−1

Define the weights at time t − 1 by ω̃η,t−1, then the importance weights ω̃η,t called particle weight,
becomes

ω̃η,t = ω̃η,t−1
pη(yt|xt)pη(xt|xt−1)

qη(xt|xt−1,y1:t)
.

3.1. Particle Smoothing

3.2. Parameter Estimation

4. Data Analysis

To implement out proposed model as well as estimating model parameter procedures, we use the105

wind speeds and directions data. The data are taken from AgriMet station at Forest Grove in Oregon
U. S. form 1st February to 28th February, 2015. Wind direction are the records of the direction from
which the wind originates, and are in terms of degrees from north (0 degrees), and angle increases in
a clockwise direction. Time Series plots for the wind directions and speeds are shown in Figure 4.1.
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Figure 4.1: Time series plots for the wind directions (top) and speeds (bottom) in Forest Grove, Oregon, U.S. from Feb
1 to 28, 2015.

The estimated model parameters by using EM algorithm are summarized in Table=4.1.110

Table 4.1: Parameter estimates by EM algorithms.

µf ρf µg ϕ µρ σρ β s
−1.6533 0.2494 0.0032 0.8743 0.2209 0.5942 2.5539 2.5358

Figure 4.2 plots the observed wind directions and speeds data together with particle filtering and
smoothing series.
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Figure 4.2: Time series plots for the wind directions (top) and speeds (bottom) together with its filtered and smoothed
series.

The estimated latent autoregressive process together with time-varying concentration parameters
are plotted in Figure 4.3.
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Figure 4.3: Time series plots for the latent process {αt}(top) and the time-varying concentration parameters {ρt}
(bottom).
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