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Abstract

In this talk, a linear model of diffusion processes with unknown drift
and diagonal diffusion matrices is discussed. We will consider the estima-
tion problems for unknown parameters based on the discrete time observa-
tion in high-dimensional and sparse settings. To estimate drift matrices,
the Dantzig selector which was proposed by Candés and Tao in 2007 will
be applied. We will prove two types of consistency of the Dantzig selector
for the drift matrix; one is the consistency in the sense of lq norm for every
q ∈ [1,∞] and another is the variable selection consistency. Moreover, we
will construct an asymptotically normal estimator for the drift matrix by
using the variable selection consistency of the Dantzig selector.

1 Introduction

Let us consider the following model given by the linear stochastic differential
equation:

Xt = X0 +

∫ t

0

Θ⊤ϕ(Xs)ds+ σWt, (1)

where {Wt}t≥0 := {(W 1
t , . . . ,W

p
t )}t≥0 is a p-dimensional standard Brownian

motion, Θ is a p× p sparse deterministic matrix, σ = diag(σ1, . . . , σp) is a p× p
diagonal matrix and ϕ(x) = (ϕ1(x1), . . . , ϕp(xp))

⊤ for x = (x1, . . . , xp)
⊤ ∈ Rp

is a smooth Rp-valued function. We will propose some estimators for the true
values (Θ0, σ0) of (Θ, σ) based on the observation of {Xt}t≥0 at n+1 equidistant
time points 0 =: tn0 < tn1 < . . . < tnn, under the high-dimensional and sparse
setting, i.e., p≫ n and the number of nonzero components of the true value Θ0

is relatively small.
To deal with high-dimensional and sparse parameters, various kinds of esti-

mators for regression models have been discussed. One of the most famous
estimation methods is the l1-penalized method called Lasso proposed origi-
nally by Tibshirani (1996), which has been studied for regression models with
high-dimensional and sparse parameters in various models including the ones of
stochastic processes.

1



On the other hand, a relatively new estimation procedure called the Dantzig
selector was proposed for linear regression models by Candés and Tao (2007) as
follows.

β̂D := arg min
β∈C

∥β∥1, C :=

{
β ∈ Rp : sup

1≤j≤p
|Zj⊤(Y − Zβ)| ≤ λ

}
,

where λ ≥ 0 is a tuning parameter. When λ = 0, the Dantzig selector coincides
with the classical estimators such as the LSE in general cases and the MLE in
Gaussian noise cases. For λ > 0, the Dantzig selector searches for the sparsest
β within the given distance of the classical estimators. The Dantzig selector has
been studied well especially for i.i.d. models. For example, Bickel et al. (2009)
showed that the Dantzig selector has some properties similar to Lasso estima-
tor for linear regression models in the sense of the consistency. In addition, as
well as Lasso, the Dantzig selector has variable selection consistency for some
regression models. Fan et al. (2016) showed the varable selection consistency of
the Dantzig selector for general single index models by using the irrepresentable
conditions which are obtained from the KKT condition of the optimization
problem. The Dantzig selector also has a good potential to be applied for other
models including the models of stochastic processes. For instance, Antoniadis
et al. (2010) applied this method to estimate regression parameter for Cox’s
proportional hazards model and proved the obtained estimator has the consis-
tency. Fujimori (2017) studied the variable selection consistency of the Dantzig
selector for the proportional hazards model and construct asymptotically nor-
mal estimators for the regression parameter and the cumulative baseline hazard
function. Moreover, it is well-known that the Dantzig selector for linear models
has computational advantages since it can be solved by a linear programming,
while Lasso demands a convex program.

In this talk, we will apply the Dantzig selector to the linear models of stochas-
tic processes (1) to estimate the drift matrix Θ0 and prove the consistency in the
sense of lq norm for every q ∈ [1,∞] and the variable selection consistency under
some appropriate conditions. Moreover, using the variable selection consistency,
we will construct a new estimator which has an asymptotic normality. We can
prove the consistency of the Dantzig selector by the standard way which is sim-
ilar to Bickel et al. (2009). However, since dealing with the KKT conditions
of the Dantzig selector for our model is more difficult due to the complicated
structure of the model than those of i.i.d. models, it may be hard to obtain the
same results as Fan et al. (2016) concerning the variable selection consistency.
Therefore, we will show another type of variable selection consistency by using
a thresholding method.
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2 Notation

We denote by ∥ · ∥q the lq norm of vector for every q ∈ [1,∞], i.e., for v =
(v1, v2, . . . , vp)

⊤ ∈ Rp, we define:

∥v∥q =

 p∑
j=1

|vj |q
 1

q

, q <∞;

∥v∥∞ = sup
1≤j≤p

|vj |.

In addition, for a m× n matrix A, where m, n ∈ N, we define ∥A∥∞ by

∥A∥∞ := sup
1≤i≤m

sup
1≤j≤n

|Aj
i |,

where Aj
i denotes the (i, j)-component of the matrix A. For a vector v ∈ Rp,

and an index set T ⊂ {1, 2, . . . , p}, we denote the |T |-dimensional sub-vector of
v restricted by the index set T by vT , where |T | is the number of elements of
the set T . Similarly, for a p × p matrix A and index sets T, T ′ ⊂ {1, 2, . . . , p},
we define the |T | × |T ′| sub-matrix AT,T ′ by

AT,T ′ := (Aj
i )i∈T,j∈T ′ .

3 Preliminaries

Let {W 1
t }t≥0, {W 2

t }t≥0, . . . be independent standard Brownian motions on a
probability space (Ω,F , P ). Define the filtration {Ft}t≥0 as follows.

Ft := F0 ∨ σ(W j
s ; j = 1, 2, . . . , s ∈ [0, t]), t ≥ 0,

where F0 is a σ-field independent of {W j
t }t≥0, j = 1, 2, . . .. We consider the

following p-dimensional linear stochastic differential equation (1) defined on the
stochastic basis (Ω,F , {Ft}t≥0, P ):

Xt = X0 +

∫ t

0

Θ⊤ϕ(Xs)ds+ σWt, t ≥ 0

where {Wt}t≥0 := {(W 1
t , . . . ,W

p
t )}t≥0 is a p-dimensional standard Brownian

motion, Θ is a p×p deterministic matrix, σ = diag(σ1, . . . , σp) is a p×p diagonal
matrix, and ϕ(x) = (ϕ1(x1), . . . , ϕp(xp))

⊤, x = (x1, . . . , xp)
⊤ is a smooth Rp-

valued function. Assume that X0 is F0-measurable. Note that {Xi
t}t≥0 for each

i = 1, 2, . . . , p satisfies the following equation.

Xi
t = Xi

0 +

∫ t

0

Θ⊤
i ϕ(Xs)ds+ σiW

i
t , t ≥ 0,
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where Θi is the i-th row of the matrix Θ. In this paper, we consider the estima-
tion problem of the true value (Θ0, σ0) of (Θ, σ). Suppose that we can observe
the process {Xt}t≥0 at n+ 1 discrete time points:

0 =: tn0 < tn1 < . . . < tnn, tnk =
ktnn
n
, k = 0, 1, . . . , n.

Write T i
0 for the support of the true value Θ0

i for every i ∈ {1, 2, . . . , p}, i.e.,
T i
0 = {j : Θ0

ij ̸= 0}. Let Si be the number of elements in the index set T i
0.

Hereafter, we assume the following high-dimensional and sparse setting for the
true matrix Θ0.

p = pn ≫ n, sup
1≤i<∞

Si =: S∗ <∞;

note that S∗ > 0 is a constant which does not depend on n. We use the quasi-
likelihood method which is commonly used in this field to estimate the unknown
parameters. The quasi-likelihood function is constructed by discretization of the
processes by Euler-Maruyama scheme, which is based on the fact that diffusion
processes can be locally approximated by Gaussian random variables. See e.g.
Yoshida (1992), Genon-Catalot and Jacod (1993) and Kessler (1997) for details.
In this model, the quasi-log-likelihood function is given by

n∑
k=1

{
−1

2
log(2πσ2

i∆n)−
|Xi

tnk
−Xi

tnk−1
−ΘT

i ϕ(Xtnk−1
)∆n|2

2σ2
i∆n

}
,

where ∆n := tnk − tnk−1 = tnn/n. We write ln(Θi, σi) for the normalized quasi-
log-likelihood, i.e.,

ln(Θi, σi) :=
1

n∆n

n∑
k=1

{
−1

2
log(2πσ2

i∆n)−
|Xi

tnk
−Xi

tnk−1
−ΘT

i ϕ(Xtnk−1
)∆n|2

2σ2
i∆n

}
.

We assume the following conditions.

Assumption 3.1. (i) It holds that pn → ∞, that log pn/
√
n∆n → 0, and that

∆n = ∆n−α, for some α ∈ (1/2, 1) and positive constant ∆. Especially,
the last condition implies that n∆n = tnn → ∞, ∆n → 0 and that n∆2

n → 0
as n→ ∞.

(ii) The functions ϕi’s are uniformly bounded and satisfy the global Lipschitz
condition, i.e., there exist positive constants L and L′ such that

sup
1≤i<∞

sup
x∈R

|ϕi(x)| ≤ L

and that
sup

1≤i<∞
|ϕi(x)− ϕi(y)| ≤ L′|x− y|, ∀x, y ∈ R.

4



(iii) For every ν ≥ 1, there exists a positive constant C̃ν such that

sup
1≤i<∞

sup
t∈[0,∞)

E
[
|Xi

t |ν
]
≤ C̃ν .

Note that this assumption implies that

sup
t∈[0,∞)

E

[
sup

1≤i≤pn

|Xi
t |ν
]
≤ pnC̃ν , ∀n ∈ N.

(iv) There exist some positive constants K1, K2, K3 and K4 such that

K2 < inf
1≤i<∞

inf
j∈T i

0

|Θ0
ij | ≤ sup

1≤i,j<∞
|Θ0

ij | < K1,

K4 < inf
1≤i<∞

|σ0
i | ≤ sup

1≤i<∞
|σ0

i | < K3.

(v) For every i ∈ N, the RSi-valued process {XtT i
0
}t∈[0,Tn] is ergodic for Θ = Θ0

and σ = σ0 with invariant measure µi
0.

4 Estimators for diffusion coefficients

It is well-known that we can ignore the influence of drift coefficients when we
estimate the diffusion coefficients (see e.g. Yoshida (1992)). We thus define the
estimator for σ0

i by the solution σ̂n,i to the equation

∂

∂σi
ln(0, σi) = 0, i = 1, 2, . . . , pn,

by letting Θ = 0. Note that σ̂n,i can be written explicitly in the following way:

σ̂2
i := σ̂2

n,i =
1

n∆n

n∑
k=1

|Xi
tnk

−Xi
tnk−1

|2.

The next theorem asserts the consistency of σ̂i uniformly in i.

Theorem 4.1. Under Assumption 3.1, it holds that

sup
1≤i≤pn

|σ̂2
i − (σ0

i )
2| →p 0, n→ ∞.

Note that Theorem 4.1 and Assumption 3.1 imply that there exists a con-
stant K̃1 such that

lim
n→∞

P

(
sup

1≤i≤pn

σ̂−2
i ≥ K̃1

)
= 0.
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5 Estimators for drift coefficients

In this section, we define the estimator for Θi by plugging σ̂i in quasi-log-
likelihood ln. Hereafter, we write ψn(Θi) for the gradient of ln(Θi, σ̂i) with
respect to Θi, and V

i
n for Hessian of −ln(Θi, σ̂i), i.e.,

ψn(Θi) :=
1

n∆nσ̂2
i

n∑
k=1

ϕ(Xtnk−1
)(Xi

tnk
−Xi

tnk−1
−ΘT

i ϕ(Xtnk−1
)∆n),

V i
n :=

1

nσ̂2
i

n∑
k=1

ϕ(Xtnk−1
)ϕ(Xtnk−1

)⊤.

Note that the Hessian matrix does not depend on Θ. Define the Dantzig selector
type estimator Θ̂n,i for Θ

0
i by

Θ̂n,i := Θ̂i := arg min
Θi∈Ci

n

∥Θi∥1, Ci
n := {Θi ∈ Rpn : ∥ψn(Θi)∥∞ ≤ γin},

where γin is a tuning parameter. Hereafter, we assume the following condition
about γin

Assumption 5.1. γin satisfies the following equality for some positive constants
ci’s which are uniformly bounded in i:

γin = ciγ̃n,

where γ̃n := (log pn/n∆n)
1/4.

We define the quantity γn by

γn = sup
1≤i≤pn

γin.

Under Assumption 5.1, it is obvious that there exists a constant c ∈ (0,∞) such
that

γn
γ̃n

= sup
1≤i≤pn

ci ≤ c.

Some remarks about the choice of ci’s are described in this talk. In order to
prove the lq consistency of the estimator for every q ∈ [1,∞], we need to discuss
on the gradient ψn(Θ

0
i ) and Hessian matrix V i

n. Since the main term of ψn(Θ
0
i )

is the terminal value of a martingale with finite moment of any order, we can use
Bernstein’s inequality and maximal inequality for sub-Gaussian variable. Then,
we have the following theorem.

Theorem 5.2. Under Assumptions 3.1 and 5.1, it holds that

lim
n→∞

P

(
sup

1≤i≤pn

∥ψn(Θ
0
i )∥∞ ≥ 2γn

)
= 0.
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To consider the appropriate condition on the high-dimensional matrix, we
introduce the following factors for V i

n.

Definition 5.3. For every index set T ⊂ {1, 2, · · · , pn} and h ∈ Rpn , hT is
an R|T | dimensional sub-vector of h constructed by extracting the components
of h corresponding to the indices in T . Define the set CT by

CT := {h ∈ Rpn : ∥hT c∥1 ≤ ∥hT ∥1}.

(i) Compatibility factor

κ(T i
0, V

i
n) := inf

0 ̸=h∈C
Ti
0

S
1
2
i (h

TV i
nh)

1
2

∥hT i
0
∥1

.

(ii) Weak cone invertibility factor

Fq(T
i
0, V

i
n) := inf

0 ̸=h∈C
Ti
0

S
1
q

i h
TV i

nh

∥hT i
0
∥1∥h∥q

, q ∈ [1,∞).

F∞(T i
0, V

i
n) := inf

0 ̸=h∈C
Ti
0

(hTV i
nh)

1
2

∥h∥∞
.

(iii) Restricted eigenvalue

RE(T i
0, V

i
n) := inf

0 ̸=h∈C
Ti
0

(hTV i
nh)

1
2

∥h∥2
.

We assume that κ(T i
0, V

i
n) satisfies the following condition.

Assumption 5.4. For every ϵ > 0, there exist δ > 0 and n0 ∈ N such that for
all n ≥ n0,

P

(
inf

1≤i≤pn

κ(T i
0, V

i
n) > δ

)
≥ 1− ϵ.

Noting that ∥hT i
0
∥q1 ≥ ∥hT i

0
∥qq for all q ≥ 1, we can see that κ(T i

0;V
i
n) ≤

2
√
SiRE(T i

0;V
i
n), and that κ(T i

0;V
i
n) ≤ Fq(T

i
0;V

i
n). So under Assumption 5.4,

the two factors RE(T i
0;V

i
n) and Fq(T

i
0;V

i
n) also satisfy the corresponding con-

ditions. See van de Geer and Bühlmann (2009) for the details of the matrix
conditions to deal with the sparsity. The following theorem give the lq consis-

tency of Θ̂i uniformly in i for every q ∈ [1,∞].

Theorem 5.5. Under Assumptions 3.1, 5.1 and 5.4, the following (i)-(iv) hold
true.

(i) It holds that

lim
n→∞

P

(
sup

1≤i≤pn

∥Θ̂i −Θ0
i ∥22 ≥

4 sup1≤i≤pn
∥Θ0

i ∥1γn
inf1≤i≤pn

RE2(T i
0, V

i
n)

)
= 0.

In particular, it holds that sup1≤i≤pn
∥Θ̂i −Θ0

i ∥2 →p 0 as n→ ∞.
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(ii) It holds that

lim
n→∞

P

(
sup

1≤i≤pn

∥Θ̂i −Θ0
i ∥2∞ ≥

4 sup1≤i≤pn
∥Θ0

i ∥1γn
inf1≤i≤pn F

2
∞(T i

0, V
i
n)

)
= 0.

In particular, it holds that sup1≤i≤pn
∥Θ̂i −Θ0

i ∥∞ →p 0 as n→ ∞.

(iii) It holds that

lim
n→∞

P

(
sup

1≤i≤pn

∥Θ̂i −Θ0
i ∥1 ≥ 8S∗γn

inf1≤i≤pn
κ2(T i

0, V
i
n)

)
= 0.

In particular, it holds that sup1≤i≤pn
∥Θ̂i −Θ0

i ∥2 →p 0 as n→ ∞.

(iv) It holds for every q ∈ (1,∞) that

lim
n→∞

P

(
sup

1≤i≤pn

∥Θ̂i −Θ0
i ∥q ≥ 4S∗ 1

q γn
inf1≤i≤pn Fq(T i

0, V
i
n)

)
= 0.

In particular, it holds that sup1≤i≤pn
∥Θ̂i −Θ0

i ∥q →p 0 as n→ ∞.

6 Variable selection by the Dantzig selector

6.1 Estimator for the support index set of the drift coef-
ficients

Noting that the rate of convergence l1 error for the Dantzig selector is γn, we
can propose the estimator of the support index set T i

0 of the true value Θ0
i as

follows.
T̂ i
n := {j : |Θ̂ij | > γin}.

We can prove that T̂ i
n = T i

0 for sufficiently large n with probability tending to
1.

Theorem 6.1. Under Assumptions 3.1, 5.1 and 5.4, it holds that

lim
n→∞

P
(
T̂ i
n = T i

0 for all i ∈ {1, 2, . . . , pn}
)
= 1.

6.2 New estimator for drift coefficients after variable se-
lection

We can construct the new estimator Θ̂
(2)
i by the solution to the next equation

ψn(Θi)T̂ i
n
= 0, Θi(T̂ i

n)
c = 0. (2)

We will prove the asymptotic normality of the estimator Θ̂
(2)

iT̂ i
n

for every i ∈
{1, 2, . . . , pn}. In order to consider the asymptotic distribution, we assume the
following condition about the Fisher information matrix.
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Assumption 6.2. Define the Si × Si matrix Qi
T i
0 ,T

i
0
by

Qi
T i
0 ,T

i
0
:=

1

(σ0
i )

2

∫
RSi

ϕ(x)T i
0
ϕ(x)⊤T i

0
µi
0(dx).

It holds that Qi
T i
0 ,T

i
0
is invertible for every i = 1, 2, . . . , pn.

Then, we can prove the asymptotic normality of Θ̂
(2)

iT̂ i
n

in the following sense.

Theorem 6.3. Under Assumptions 3.1, 5.1, 5.4 and 6.2, it holds for every
i ∈ N that √

n∆n(Θ̂
(2)

iT̂ i
n

−Θ0
iT i

0
)1{T̂ i

n=T i
0}

→d N

(
0,
(
Qi

T i
0 ,T

i
0

)−1
)

as n → ∞. Note that for every i ∈ N, it holds that i < pn for sufficiently large
n.
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