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1 Boundary-free kernel distribution function estima-

tors

Let X1, X2, ..., Xn be independently and identically distributed random variables with an ab-
solutely continuous distribution function FX and a density fX . The classical nonparametric
estimator of FX has been the empirical distribution function defined by

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x), x ∈ R, (1)

where I(A) denotes the indicator function of a set A. It is obvious that Fn is a step function
of height 1

n
at each observed sample point Xi. When considered as a pointwise estimator

of FX , Fn(x) is an unbiased and strongly consistent estimator of FX(x). However, given
the information that FX is absolutely continuous, it seems to be more appropriate to use a
smooth and continuous estimator of FX rather than the empirical distribution function Fn.

Parzen (1962) and Rosenblatt (1956) introduced kernel density estimator as a smooth
and continuous estimator for density function. It is defined as

f̂X(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R, (2)

where K is a function called as kernel and h > 0 is called as bandwidth, which is a smoothing
parameter and controls the smoothness of f̂X . It is usually assumed that K is a symmetric
(about 0) continuous nonnegative function with

∫∞
−∞K(v)dv = 1, as well as h → 0 and

nh → ∞ when n → ∞. Since distribution function is actually an integral of density
function, this kernel density estimator gave an idea to define a kernel distribution function
estimator. Nadaraya (1964) defined it as

F̂X(x) =
1

n

n∑
i=1

W

(
x−Xi

h

)
, x ∈ R, (3)

where W (v) =
∫ v

−∞K(w)dw. It is easy to prove that this kernel distribution function
estimator is continuous, and satisfies all the properties of a distribution function. Moreover,



several authors showed that the asymptotic performance of F̂X(x) is better than that of
Fn(x), see Azzalini (1981), Reiss (1981), Falk (1983), Singh et al. (1983), Hill (1985),
Swanepoel (1988), Shirahata and Chu (1992), and Abdous (1993).

Under the condition that fX (the density) has one continuous derivative f ′X , it has been
proved by the above-mentioned authors that, as n→∞,

Bias[F̂X(x)] =
h2

2
f ′X(x)

∫ ∞
−∞

v2K(v)dv + o(h2), (4)

V ar[F̂X(x)] =
1

n
FX(x)[1− FX(x)]− 2h

n
r1fX(x) + o

(
h

n

)
(5)

where r1 =
∫∞
−∞ vK(v)W (v)dv. It is easy to show that r1 is a nonnegative number.

However, all of the previous explanations implicitly assume that the true density is sup-
ported on the entire real line. If we deal with R+ or unit interval for instance, the standard
kernel distribution function estimator will suffer the so called boundary bias problem. This
is because the estimator does not ’feel’ the boundary, and puts some weights for the lack of
data on the axis of zero probability.

To solve this problem, we propose a new kernel based estimator for distribution function
by transforming the data. The idea is by utilising a function g which bijectively transform
the support A of the random variable under consideration into R, then doing the usual
standard kernel distribution function estimation of Y = g(X), instead of for the X itself.
However, since the variable being analised is X, we should apply back transformation to find
the estimates of FX(x). Hence, our proposed estimator is

F̃X(x) =
1

n

n∑
i=1

W

[
g(x)− g(Xi)

h

]
, x ∈ A, (6)

where h > 0 is a bandwidth. It is obvious that no weight will be applied outside the support
A and we can assign the value of F̃X equals to 0 for x = inf A and equals to 1 when x = supA,
without abusing the properties of distribution function. No boundary bias problem involves
in this setting. Another advantage of this proposed estimator is its bias and variance being
still in the order of h2 and n−1, respectively, just as the standard one. They are

Bias[F̃X(x)] =
h2

2
c(x)

∫ ∞
−∞

v2K(v)dv + o(h2) (7)

V ar[F̃X(x)] =
1

n
FX(x)[1− FX(x)]− 2h

n

fX(x)

g′(x)
r1 + o

(
h

n

)
, (8)

where r1 =
∫∞
−∞ vK(v)W (v)dv and

c(x) =
f ′X(x)

[g′(x)]2
− fX(x)g′′(x)

[g′(x)]3
(9)

For example, if the support is (0,∞), one of the simplest function that transform it to
entire real line bijectively is the logarithmic function. Doing so, our proposed idea for kernel
distribution function estimator is

F̃X(x) =
1

n

n∑
i=1

W

(
log x− logXi

h

)
, x ∈ R+ (10)



with the bias and variance of F̃X are

Bias[F̃X(x)] =
h2

2
[xfX(x) + x2f ′X(x)]

∫ ∞
−∞

v2K(v)dv + o(h2), (11)

and

V ar[F̃X(x)] =
1

n
FX(x)[1− FX(x)]− 2h

n
r1xfX(x) + o

(
h

n

)
, (12)

where r1 =
∫∞
−∞ vK(v)W (v)dv.

Same goes when the support of the data is the unit interval, by utilising the transforma-
tion Y = Φ−1(X), where Φ is the standard normal distribution function. The estimator will
be

F̃X(x) =
1

n

n∑
i=1

W

[
Φ−1(x)− Φ−1(Xi)

h

]
, x ∈ [0, 1] (13)

with the bias

Bias[F̃X(x)] =
h2

2
f ′Y [Φ−1(x)]

∫ ∞
−∞

v2K(v)dv + o(h2) (14)

and the variance

V ar[F̃X(x)] =
1

n
FX(x)[1− FX(x)]− 2h

n
r1fY [Φ−1(x)] + o

(
h

n

)
, (15)

where

fY [Φ−1(x)] = φ[Φ−1(x)]fX(x),

and

f ′Y [Φ−1(x)] = φ′[Φ−1(x)]fX(x) + φ2[Φ−1(x)]f ′X(x),

with φ is the standard normal density function.

2 Boundary-free smoothed Kolmogorov-Smirnov type

test

Continuous goodness-of-fit (GOF) is a classical hypothesis testing problem in statistics. De-
spite numerous suggestions, the Kolmogorov-Smirnov (KS) test is, by far, the most popular
GOF test used in practice. Unfortunately, it lacks of smoothness that can lead to smaller
power at the tails, which is important in many practical applications. It is natural if one
uses the naive kernel distribution function estimator in place of the empirical distribution
function. Thus, instead of the standard KS statistic

Dn = sup
−∞<x<∞

|Fn(x)− FX(x)| (16)



being used to test whether random variable X having FX as its distribution, we can refor-
mulate by smoothing it to

D̂ = sup
−∞<x<∞

|F̂X(x)− FX(x)|, (17)

where F̂ is the naive kernel distribution function estimator.
However, a new problem is raising when the support of the random variable we are dealing

with is not the entire real line, i.e. boundary problem. As usual, since the naive kernel
distribution function estimator puts some weight outside the support, the value |F̂X(x) −
FX(x)| is larger than it is supposed to be when x is in the boundary region. This situation
can lead to a rejection of the null hypothesis and lowering the power of the test near the
boundary.

For some illustrations, we provide the results of a numerical simulation of naive kernel
distribution function estimator, and compare them with the theoretical distribution function.
We generated 20 observations from two distributions, exp(2) and U(0, 1). As we can see at

Figure 1: naive kernel DF estimator(Fh) vs
exp(2) distribution function(F)

Figure 2: naive kernel DF estimator(Fh) vs
U(0, 1) distribution function(F)

both figures, the gap between F̂X and FX is going larger near the boundary, and this can
lead to wrong conclusion of the test. Even, the estimated graphs fairly resemble normal
distribution, which means if the null hypothesis is the data being normally distributed, H0

may not be rejected. This situation can enlarge the probability of type 2 error.
To overcome this problem, we propose to use our estimator in section 1 to substitute

empirical distribution function in standard KS statistic. Therefore, we define the boundary-
free smoothed KS type test as

D̃ = sup
−∞<x<∞

|F̃X(x)− FX(x)|, (18)

where F̃X is our boundary-free kernel distribution function estimator. Better result can be
seen when the same data sets for Figure 1 and 2 are used in our proposed formula F̃X .

We also did a second numerical study by calculating simulated power of our proposed
test with n = 50, and then we compared it with the result of the standard KS test.



Figure 3: proposed kernel DF estimator(Ft)
vs exp(2) distribution function(F)

Figure 4: proposed kernel DF estimator(Ft)
vs U(0, 1) distribution function(F)

Probability rejecting H0, proposed
Real \ H0 exp(1/2) Gamma(3, 2) abs.N(0, 1) log.N(0, 1)
exp(1/2) 0.050 0.934 0.957 0.976
Gamma(3, 2) 0.834 0.051 0.872 0.836
abs.N(0, 1) 0.951 0.936 0.050 0.981
log.N(0, 1) 0.871 0.829 0.895 0.050

Probability rejecting H0, KS test
Real \ H0 exp(1/2) Gamma(3, 2) abs.N(0, 1) log.N(0, 1)
exp(1/2) 0.051 0.746 0.855 0.724
Gamma(3, 2) 0.887 0.050 0.851 0.834
abs.N(0, 1) 0.784 0.748 0.051 0.878
log.N(0, 1) 0.862 0.830 0.891 0.052

The asymptotic behaviours of our proposed test statistic are stated in the following
theorems.

Theorem 1. Let X be a random variable with distribution function FX supported on a set
A. If F̃X is the proposed boundary-free kernel distribution function estimator, then

sup
−∞<x<∞

|F̃X(x)− FX(x)| = op

(
1√
n

)
(19)

Theorem 2. Let X be a random variable with distribution function FX supported on a set
A. If D̃ is the proposed boundary-free smoothed KS-type statistic, then

lim
n→∞

Pr(
√
nD̃ ≤ x) =

√
2π

x

∞∑
i=1

exp

[
−(2i− 1)2π2

8x2

]
. (20)
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