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1 Introduction

In general, the purpose of backtesting is twofold: to monitor the performance of the model
and estimation methods for risk measurement, and to compare relative performance of
the models and methods. It is a tool for the validation process which is indispensable
for adequate financial risk management. According to Consultative Document of Basel
Committee on Banking Supervision (October 2013),

“Move from Value-at-Risk (VaR) to Expected Shortfall (ES): A number of weak-
nesses have been identified with using VaR for determining regulatory capital
requirements, including its inability to capture “tail risk”. For this reason, the
Committee proposed in May 2012 to replace VaR with ES. ES measures the
riskiness of a position by considering both the size and the likelihood of losses
above a certain confidence level. The Committee has agreed to use a 97.5%
ES for the internal models-based approach and has also used that approach
to calibrate capital requirements under the revised market risk standardised
approach”

However, in the same document, the Committee requires backtesting VaR, not ES, in
Revised Models-based Approach

“In addition to P&L attribution, the performance of a trading desk’s risk
management models will be evaluated through daily backtesting. Backtesting
requirements would be based on comparing each desk’s 1-day static
value-at-risk measure at both the 97.5th percentile and the 99th
percentile to actual P&L outcomes, using at least one year of current
observations of the desk’s one-day actual and theoretical P&L. The backtesting
assessment would be run at each trading desk as well as for the global (bank-
wide) level.”

This seemingly self-contradictory requirement is perhaps based on the following fact: many
people believe that it is easier to backtest VaR than Expected Shortfall (ES) and other
risk measures because (i) the existing tests for ES are based on parametric assumptions for
the null distribution; (ii) asymptotic approximation is needed for the null distribution of
the test statistics. In the case of Value-at-Risk (VaR), a popular procedure for backtesting
depends on the number of VaR violations (Campbell [1]), which is distribution-free with
finite samples and intuitively appealing.

Thus the ‘backtestability’of a risk measure apparently means that it can be backtested
in a distribution-free manner with finite samples. Recently, the concept called ”elicitabil-
ity” has recently attracted much attention in order to claim the superiority of VaR in terms
of backtesting. Roughly speaking, a statistical functional is called elicitable if it is a unique



minimizer of some expected loss (Gneiting [7]). While VaR is easily seen to be elicitable,
it has been proved that ES and the distortion risk measures fails to satisfy this condition
(Wang and Ziegel [11], Ziegel [13]). We claim that while elicitability is certainly useful for
comparing and ranking models/procedures, there seems to be no clear connection with
monitoring the performance of a model/procedure in use. We will illustrate this with
simple examples, and also examine the problem from the decision-theoretic perspective
including the prequential principle by Dawid [4, 5, 6], recently argued in Davis [3].

Finally, some backtesting procedures for distortion risk measures are suggested, and we
check its effectiveness in a simulation study using ES and also proportional odds distortion
risk measure.

2 Risk Measurement Models

We follow McNeil et al. [10] for the purpose of risk measurement; based on historical
observations and given a specific model, a statistical estimate of the distribution of the
future loss of a position, or one of its functionals, is to be calculated. Let L1, L2, . . . , Ln, . . .
be loss variables with values in R, and let X1,X2, . . . ,Xn, . . . be Rd-valued covariates.
Let Fn := σ(Lk,Xk, 1 ≤ k ≤ n) be a filtration generated by the loss variables and
covariates. Then the risk measurement model specifies a family of probability distributions
on (Rd+1)∞ for the sequence (Ln,Xn, n ∈ N)

As nicely explained in McNeil et al. [10], there are two approaches to risk measure-
ment. Suppose that the loss process (Ln)n∈N is a stationary time series with a stationary
distribution function F . At time n− 1, we have two options:

Unconditional Approach: Look at the unconditional distribution function F (x) =
P(Ln ≤ l) and its functionals. This is considered to be suitable for the credit
risk and insurance with a large time horizon.

Conditional Approach: Look at the conditional distribution function Fn(l) := P(Ln ≤
l |Fn−1) and its functinals. This is considered to be suitable for the market risk
with a short time horizon./

There are pros and cons with these two approaches from the theoretical, not conceptual
point of view:

(i) Under the assumption of stationarity, nonparametric estimation of many functionals
is possible (indeed, we can use the empirical process theory)

(ii) We need to fit very specific (parametric) models for the computation of the condi-
tional distribution and its functionals.

(iii) For the backtesting purpose, the conditional approach is preferred since the distri-
bution theory is theoretically clear and correct (as will be seen below).

(iv) From the Bayesian perspective, the conditional approach would definitely be prefer-
able.

In what follows, we take the conditional approach.



Next we discuss backtesting procedures in a general setup. Let L1, . . . , LN be the entire
observations, and set the estimation window size equal to m. Let ρ be a risk measure of
one’s choice. Statistically, a backtesing procedure is just a form of cross validation; the ex
ante risk measure forecasts from the model is compared with the ex post realized portfolio
loss. Namely, at step k, use the sample Lk, . . . , Lk+m−1 to estimate ρ(Lk+m), and using
the realized loss Lk+m to measure the goodness-of-fit of your risk measurement model in
terms of the estimation of the risk measure.

data estimand(risk measure) realized loss

L1, . . . , Lm ρ(Lm+1) Lm+1

L2, . . . , Lm+1 ρ(Lm+2) Lm+2
...

...
...

LN−m, . . . , LN−1 ρ(LN ) LN

In the VaR case, the conditional VaR, denoted by VaRn
α, satisfies

E
(
1{Ln > VaRn

α}
∣∣ Fn−1

)
= α

By Lemma 4.29 of McNeil et al. [10], if (Yn) is a sequence of Bernoulli random vari-
ables adapted to (Fn) and if E(Yn+1 |Fn) = p > 0, then (Yn) must be i.i.d. Therefore,
1{Ln > VaRn

α}, n = m + 1, . . . , N are i.i.d. Bernoulli random variables, and this gives

the grounds for backtesting using 1{Ln > V̂aR
n

α}, where V̂aR
n

α is an estimate of the VaR
associated with the conditional distribution function Fn(l) = P(Ln ≤ l |Fn−1). Namely,

(i) Test
N∑

n=m+1

1{Ln > V̂aR
n

α} ∼ Bin(N −m,α)

(ii) Test independence of 1{Ln > V̂aR
n

α}, n = m+ 1, . . . , N (e.g., runs test)

This is intuitively appealing, and also distribution-free with finite samples in the sense
that the null distributions of the test statistics do not depend on the underlying loss
distribution F .

On the other hand, many researchers claim that it is more difficult to backtest a
procedure for calculating ES than it is to backtest a procedure for calculating VaR (Yamai
and Yoshiba [12], Hull [8], Dańıelsson [2], among others). It is because the existing tests
for ES are based on parametric assumptions for the null distribution and some asymptotic
approximation for the null distribution.

Recently the concept called elicitability is called for to support the claim that the
expected shortfall (and distortion risk measures) cannot be backtested. A statistical
functional T (F ) is called elicitable relative to F if T (F ) is a unique minimizer of t 7→
EF [S(t, Y )] for some scoring function S, ∀F ∈ F . Examples include VaRθ(F ) = F−1(1−
θ) and the mean functional T (F ) =

∫
y dF (y). It is useful when one wants to compare

and rank several estimation procedures: With forecasts xi and realizations yi, use

1

N

N∑
i=1

S(xi, yi)

as a performance evaluation criterion. But there seems to be no clear connection with
monitoring purpose. For example, the mean cannot be backtested nonparametrically based



on the sum of squared errors without invoking asymptotic approximation or assuming
parametric distribution. The expectile has emerged as the only law invariant and coherent
risk measure that is elicitable, but it lacks intuitive interpretation as a risk measure.

2.1 Consistency of Mark Davis

We use the following terminologies:

Model: P = {P z : z ∈ Z } is a family of probability distributions on (Rd+1)∞ for the
sequence (Ln,Xn)n∈N;

Calibration function ϕ : R2 → R

Normalizing sequence b = (bn): strictly increasing predictable sequence such that

lim
n→∞

bn = ∞, P z-a.s., ∀z ∈ Z

Regular conditional distribution functions

F z
1 (l) := P z(L1 ≤ l), F z

n(l) := P z(Ln ≤ l |Fn−1), n = 2, 3, . . .

According to Davis [3], a statistical functional T is called (ϕ, b,P)-consistent if

lim
n→∞

1

bn

n∑
k=1

ϕ(Lk, T (F
z
k )) = 0, P z-a.s., ∀z ∈ Z

For instance, VaRk
α satisfies the above condition with

ϕ(l, t) = 1[t,∞)(l)− α, bn = n

because of the SLLN.

In practice, given observations (L1,X1), . . . , (Lk−1,Xk−1), we produce a forecast τk
for T (F z

k ) based on some algorithm. And one can evaluate the performance of this forecast
by calculating

Jn(L1, . . . , Ln, τ1, . . . , τn) =
1

bn

n∑
k=1

ϕ(Lk, τk).

If Jn(τ) is sufficiently close to 0 (for large n), then our forecast algorithm may be considered
to be fine. This criterion satisfies Dawid’s prequential principle: “Any validity criterion
should be calculated knowing only the realized losses and the actual forecasts issued”.

Davis shows that the consistency of VaR holds under very general conditions, while for
mean-type functionals, significant conditions must be imposed to ensure their consistency.
Then he concludes that verifying the validity of forecasts for mean-type functionals is
essentially more problematic than that for quantile-type functionals. However, since the
consistency is an asymptotic requirement, it does not give us a totally satisfactory answer.



2.2 Backtesting Predictive Distributions

Recall the following result on so-called Rosenblatt transform:

Theorem 2.1 Define
Un := F z

n(Ln), n = 1, 2, . . .

Then, assuming the a.s.-continuity of all F z
n , U1, U2, . . . , are i.i.d. U(0, 1) random variables

under P z.

Suppose we have a sequence of forecasts F̂k of F z
k , k = 1, 2, . . . , n. One can verify the

validity of (F̂k) by testing

H0 : F̂1(L1), . . . , F̂n(Ln)
i.i.d.∼ U(0, 1)

We can extend Davis’s Consistency to maps with range being a general metric space.
Let G be the space of distribution functions on R with the topology of weak convergence,
and let S be a Polish space. Consider a map T : G → S , extending a statistical functional.
A calibration function ϕ is now a map from (R,S ) → R

Definition 2.2 A map T : G → S is called (ϕ, b,P)-consistent if

lim
n→∞

1

bn

n∑
k=1

ϕ(Lk, T (F
z
k )) = 0, P z-a.s., ∀z ∈ Z

For the predictive distributions, take bn = n, S = G , T (F ) = F , and

ϕq(l, F ) := 1{F (l) ≤ q} − q, q ∈ Q ∩ [0, 1]

Then by SLLN, we have

lim
n→∞

1

bn

n∑
k=1

ϕq(Lk, T (F
z
k )) = lim

n→∞

1

n

n∑
k=1

[
1{F z

k (Lk) ≤ q} − q

]
= 0, P z-a.s., ∀z ∈ Z

for all q ∈ Q ∩ [0, 1] with the same conditions as the VaR case. This shows that the VaR
and the predictive distribution are consistent under the same condition, while the mean
is consistent under much more stringent conditions. This is intuitively an odd conclusion.

3 Backtesting Distortion Risk Measures

We can use the same approach as in McNeil and Frey [9] to devise a backtesting proce-
dure for the distortion risk measure. Write ρn(Ln) for a distortion risk measure with a
distortion D for the conditional distribution function Fn(l) := P(Ln ≤ l |Fn−1), Fn :=
σ(Lk,Xk : 1 ≤ k ≤ n):

ρn(Ln) :=

∫
[0,1]

F−1
n (u) dD(u)

Suppose that for Fn−1-measurable µn and σn,

Ln = µn + σnZn,



where (Zn) is i.i.d. with finite 2nd moment. For example, the following popular ARMA(p1,
q1) model with GARCH(p2, q2) errors satisfies the above assumptions:

Ln = µn + σnZn,

µn = µ+

p1∑
i=1

ϕi(Ln−i − µ) +

q1∑
j=1

θj(Ln−j − µn−j),

σ2
n = α0 +

p2∑
i=1

αi(Ln−i − µn−i)
2 +

q2∑
j=1

βjσ
2
n−j ,

where Zn’s are i.i.d. with finite second moment, α0 > 0, αi ≥ 0, i = 1, . . . , p2, βj ≥ 0,
j = 1, . . . , q2. Usually, it is assumed that (Ln) is covariance stationary, and

∑p2
i=1 αi +∑q2

j=1 βj < 1.

By the (conditional version of) translation invariance and positive homogeneity, we
have

ρn(Ln) = µn + σnρ(Z)

where Z is a generic random variable with the same distribution function G as Zn’s.

(i) If G is a known df, ρ(Z) is a known number. We need to estimate µk and σk based
on Lk−n, . . . , Xk−1 using some specific model and method (e.g., ARMA with GARCH
errors using QML). Then the risk measure estimate is given by

ρ̂n(Ln) := µ̂n + σ̂nρ(Z)

Observe that ρ(Z) = E [Znd(G(Zn))] implies E [(Zn − ρ(Z))d(G(Zn))] = 0. Defining

Rn := Zn − ρ(Z) =
Ln − ρn(Ln)

σn

one sees that (Rnd(G(Zn)))t∈Z is i.i.d. This suggests that in practice, we may perform
backtesting by examining mean-zero behavior of by examining mean-zero behavior of
R̂kd(G(Ẑk)), k = n+ 1, . . . , N , where

R̂k :=
Lk − ρ̂k(Lk)

σ̂k

and

Ẑk =
Lk − µ̂k

σ̂k
= R̂k + ρ(Z)

The bootstrap test can be employed for a formal test.

(ii) When G is unknown, we need to estimate G in addition to µk and σk. In ARMA
with GARCH errors model, we could use the empirical distribution function of the residuals
Z̃m’s: for m = k − n, . . . , k − 1, let

Z̃m = ε̃m/σ̃m,

where ε̃m is the residuals from ARMA part, and

σ̃2
m = α̂0 +

p2∑
i=1

α̂iε̃
2
m−i +

q2∑
j=1

β̂j σ̂
2
m−j .

Then one can estimate G by

G̃k(z) =
1

n

k−1∑
m=k−n

1{Z̃m ≤ z}.



Simulation study

We simulate the following GARCH(1,1) process.

Lk = σkZk, Zk ∼ N(0, 1) i.i.d.

σ2
k = 0.01 + 0.9σ2

k−1 + 0.08L2
k−1

where the Zt are i.i.d. standard normal random variables. We set T = 1000, n = 500 and
θ = 0.05, and for t = n+ 1, . . . , T , plot

(i) Xtd(F̂t−n:t−1(Xt))− ρ̂(t−n:t−1) (historical, unconditional)

(ii) R̂td(G(Ẑt)) (normal-GARCH based, conditional)

The results are displayed in Figures 1 and 2. (i) mean = −0.0286, std = 2.073 and (ii)
mean = −0.0185, std = 1.019
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Figure 1: Backtesting results for expected shortfall (θ = 0.05)
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Figure 2: Backtesting results for proportional odds distortion (θ = 0.05)


