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Abstract

Elliptically contoured distributions generalize the multivariate normal distribu-

tions in such a way that the density generators need not be exponential. However,

as the name suggests, elliptically contoured distributions remain to be restricted

in that the similar density contours need to be elliptical. Kamiya, Takemura and

Kuriki [Star-shaped distributions and their generalizations, Journal of Statistical

Planning and Inference 138 (2008), 3429–3447] proposed star-shaped distributions

in which the density level sets are allowed to be arbitrary similar star-shaped sets.

In this paper, we propose a nonparametric estimator of the shape of the density con-

tours of star-shaped distributions, and prove its strong consistency with respect to

the Hausdorff distance. We examine the performance of our estimator by simulation

studies.
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1 Introduction

Elliptically contoured distributions generalize the multivariate normal distributions in

such a way that the density generators need not be exponential. In this way, the class

of elliptically contoured distributions includes, for example, distributions whose tails are

heavier than those of the multivariate normal distributions. However, as the name sug-

gests, elliptically contoured distributions remain to be restricted in that the similar density

contours need to be elliptical. Hence, skewed distributions are not included in this class.

Kamiya, Takemura and Kuriki [5] proposed star-shaped distributions in which the

density level sets are allowed to be arbitrary similar star-shaped sets (see also [6], [4]).

Essentially the same idea can be found in v-spherical distributions by Fernández, Osiewal-

ski and Steel [2] and center-similar distributions by Yang and Kotz [7]. Asymmetry is

allowed in star-shaped distributions. Hence, besides distributions which are symmetric

with respect to the center such as elliptically contoured distributions and lq-spherical dis-

tributions, the class of star-shaped distributions includes asymmetric distributions such

as multivariate skewed exponential power distributions.

Kamiya, Takemura and Kuriki [5] studied distributional properties of star-shaped dis-

tributions, e.g., the independence of the “length” and the “direction,” and the robustness

of the distribution of the “direction.” However, they did not investigate inferential prob-

lems about star-shaped distributions. From the perspective of [5], the most important

problem in the inference for star-shaped distributions is the estimation of the shape of

their density contours

In this paper, we propose a nonparametric estimator of the shape of the density con-

tours. The point is that the density of the usual direction under a star-shaped distribution

is in one-to-one correspondence with a function which determines the shape of the den-

sity contours. Thus, by nonparametrically estimating the density of the direction, we

can obtain a nonparametric estimator of the shape. We prove its strong consistency with
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respect to the Hausdorff distance.

The organization of this paper is as follows. We describe a star-shaped distribution

and define the shape of its density contours in Section 2. Next, in Section 3 we propose

an estimator of the shape of the density contours of a star-shaped distribution. Next,

in Section 4 we prove strong consistency of our estimator of the shape. In Section 5, we

examine the performance of our estimator by simulation studies. We conclude with some

remarks in Section 6.

2 Star-shaped distribution and the shape of its den-

sity contours

In this section, we describe a star-shaped distribution and define the shape of its density

contours.

Suppose a random vector x ∈ X := Rp \ {0}, p ≥ 2, is distributed as

(1) x ∼ h(r(x))dx,

where r : X → R>0 is continuous and equivariant under the action of the positive real

numbers: r(cx) = cr(x) for all c ∈ R>0. In the particular case that r(x) = (xTΣ−1x)1/2

(· T denotes the transpose) for a positive definite matrix Σ and that the density generator

h((−2( · ))1/2) is exponential: h((−2( · ))1/2) = const×exp( · ), we obtain the multivariate

normal distribution Np(0,Σ).

Define Z := {x ∈ X : r(x) = 1}, and write cZ := {cz : z ∈ Z} for c ∈ R≥0. Then the

density h(r(x)) is constant on each of cZ ⊂ X , c ∈ R>0: h(r(x)) = h(c) for all x ∈ cZ. In

cases where h : R>0 → R≥0 is injective (e.g., strictly decreasing), each cZ, c ∈ R>0, is a

contour of the density h(r(x)): cZ = {x ∈ X : h(r(x)) = h(c)}, but in general, a contour
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of the density is a union of some cZ’s: {x ∈ X : h(r(x)) = t} =
∪

c∈h−1({t}) cZ, t ∈ R≥0.

Noticing that Z :=
∪

0≤c≤1 cZ ⊂ X ∪ {0} = Rp is a star-shaped set with respect to

the origin, we say that x in (1) has a star-shaped distribution. Also, we call Z the shape

of the density contours of this star-shaped distribution, including cases where h is not

injective.

3 Estimation of the shape

In this section, we propose an estimator of the shape Z of the density contours of a

star-shaped distribution.

Let ∥ · ∥ denote the Euclidean norm. Under (1), the direction u := x/∥x∥ ∈ Sp−1 (the

unit sphere in Rp) is distributed as

(2) u ∼ f(u)du with f(u) := c0r(u)
−p,

where du stands for the volume element of Sp−1 and c0 = 1/
∫
Sp−1 r(u)

−pdu (Theorem 4.1

of [5]). Note the function f : Sp−1 → R≥0 in (2) is continuous and satisfies f(u) > 0 for

all u ∈ Sp−1. From now on, we assume r is taken so that
∫
Sp−1 r(u)

−pdu = 1 and hence

c0 = 1.

Now, we can write r(u) = f(u)−1/p for u ∈ Sp−1. Thus, for x ∈ X , the condition that

r(x) = 1 is equivalent to ∥x∥ = 1/r(x/∥x∥) = f(x/∥x∥)1/p. Hence

Z = {x ∈ X : r(x) = 1} =
{
f(u)

1
pu : u ∈ Sp−1

}
,

and we can estimate Z by estimating the density f(u) of u = x/∥x∥.

Suppose we are given an i.i.d. sample x1, . . . , xn from (1), and consider estimating

f(u) based on u1, . . . , un, where ui := xi/∥xi∥, i = 1, . . . , n.
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Let f̂n(u) be an estimator of f(u) such that f̂n(u) ≥ 0 for all u ∈ Sp−1. Define the

estimator Ẑn of Z by

Ẑn :=
{
f̂n(u)

1
pu : u ∈ Sp−1

}
.

Then Ẑn :=
∪

0≤c≤1 cẐn is also a star-shaped set with respect to the origin.

4 Strong consistency

In this section, we prove strong consistency of our estimator Ẑn of the shape Z.

Let δH(Ẑn, Z) be the Hausdorff distance between Ẑn and Z:

δH(Ẑn, Z) := inf
{
δ > 0 : Ẑn ⊂ Z +B(δ), Z ⊂ Ẑn +B(δ)

}
,

where B(δ) := {x ∈ Rp : ∥x∥ ≤ δ}, and + denotes the Minkowski sum. Similarly, let

δH(Ẑn,Z) = inf
{
δ > 0 : Ẑn ⊂ Z +B(δ), Z ⊂ Ẑn +B(δ)

}
.

The purpose of this section is to show that, under some conditions, δH(Ẑn, Z) and

δH(Ẑn,Z) converge to zero almost surely.

We begin by proving that δH(Ẑn, Z) and δH(Ẑn,Z) are bounded by dn := supu∈Sp−1 |f̂n(u)1/p−

f(u)1/p|:

(3) δH(Ẑn, Z) ≤ dn, δH(Ẑn,Z) ≤ dn.

Let z0 = c̃0f(u0)
1/pu0 (0 ≤ c̃0 ≤ 1, u0 ∈ Sp−1) be an arbitrary point of Z. Take

z′0 = c̃0f̂n(u0)
1/pu0 ∈ Ẑn. Then ∥z′0 − z0∥ = c̃0|f̂n(u0)

1/p − f(u0)
1/p| ≤ dn, and thus

z0 ∈ Ẑn+B(dn). This argument implies that Z ⊂ Ẑn+B(dn). Similarly, Ẑn ⊂ Z+B(dn)

holds true. Therefore, the second inequality in (3) is proved. The proof of the first
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inequality in (3) is similar.

Next we want to verify that dn → 0 (n → ∞) almost surely for estimators f̂n(u)

having a certain property.

For each u ∈ Sp−1 and each n, we can write

(4) f̂n(u)
1
p = f(u)

1
p +

1

p
f ∗
n(u)

1
p
−1

(
f̂n(u)− f(u)

)

for some f ∗
n(u) between f̂n(u) and f(u).

Let ϵn := supu∈Sp−1 |f̂n(u) − f(u)|. Then we have f ∗
n(u) ≥ f(u) − ϵn for all u ∈ Sp−1

and all n, and thus

(5) inf
u∈Sp−1

f ∗
n(u) ≥ inf

u∈Sp−1
f(u)− ϵn

for all n. Since f : Sp−1 → R≥0 is continuous, Sp−1 is compact and f(u) > 0 for all

u ∈ Sp−1, we have cf := infu∈Sp−1 f(u) = minu∈Sp−1 f(u) > 0. Now, suppose the estimator

f̂n(u) satisfies

(6) ϵn = sup
u∈Sp−1

∣∣∣f̂n(u)− f(u)
∣∣∣ → 0 a.s.

Then, with probability one, we have ϵn < cf/2 for all sufficiently large n. Together with

this fact, inequality (5) implies that, with probability one,

(7) inf
u∈Sp−1

f ∗
n(u) ≥ cf − ϵn >

cf
2

for all sufficiently large n.
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It follows from (4) and (7) that, with probability one,

dn = sup
u∈Sp−1

∣∣∣f̂n(u) 1
p − f(u)

1
p

∣∣∣ ≤ 1

p

{
inf

u∈Sp−1
f ∗
n(u)

} 1
p
−1

· sup
u∈Sp−1

∣∣∣f̂n(u)− f(u)
∣∣∣

≤ 1

p

(cf
2

) 1
p
−1

ϵn

for all sufficiently large n. Therefore, by (6) we obtain dn → 0 (n → ∞) almost surely, as

was to be verified.

Now, for estimating a general density f(u) on Sp−1, p ≥ 2 (i.e., not necessarily f(u)

in (2)) based on an i.i.d. sample u1, . . . , un from f(u)du, we can use the following kernel

density estimator (Hall, Watson and Cabrera [3], Bai, Rao and Zhao [1]):

(8) f̂n(u) =
C(η)

nηp−1

n∑
i=1

L

(
1− uTui

η2

)
, u ∈ Sp−1,

where η = ηn > 0, L : R≥0 → R≥0 satisfies 0 <
∫∞
0

L(v)v(p−3)/2dv < ∞ and C(η) > 0

is given by C(η) = ηp−1/
∫
Sp−1 L((1 − uTy)/η2)du, y ∈ Sp−1. Note that C(η) does not

depend on y and can be written as C(η) = ηp−1/{ωp−1

∫ 1

−1
L((1−t)/η2)(1−t2)(p−3)/2dt} =

1/{ωp−1

∫ 2/η2

0
L(v)v(p−3)/2(2 − vη2)(p−3)/2dv}, ωp−1 := 2π(p−1)/2/Γ((p − 1)/2) (equation

(2·2) of [3]; equation (1.6) of [1]).

A sufficient condition for supu∈Sp−1 |f̂n(u) − f(u)| → 0 a.s. for a general density f(u)

on Sp−1, p ≥ 2, and its kernel estimator f̂n(u) in (8) was obtained by Bai, Rao and Zhao

[1], Theorem 2: supu∈Sp−1 |f̂n(u)− f(u)| → 0 a.s. holds true if the following conditions are

satisfied: 1. f : Sp−1 → R≥0 is continuous; 2. L : R≥0 → R≥0 is bounded; 3. L : R≥0 →

R≥0 is Riemann integrable on any finite interval in R≥0 with
∫∞
0

supw: |
√
w−

√
v|<1 L(w) ·

v(p−3)/2dv < ∞; 4. ηn → 0 as n → ∞; 5. nηp−1
n / log n → ∞ as n → ∞.

Note that under the fourth condition ηn → 0 (n → ∞), we have limn→∞ C(ηn) =

1/{2(p−3)/2ωp−1

∫∞
0

L(v)v(p−3)/2dv} (equation (1.7) of [1]).
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The preceding arguments yield the following result:

Theorem 4.1. Let x1, . . . , xn ∈ X = Rp \ {0}, p ≥ 2, be an i.i.d. sample from a star-

shaped distribution h(r(x))dx. Let f̂n(u) = (C(η)/(nηp−1))
∑n

i=1 L((1 − uTui)/η
2) be a

kernel estimator of the density f(u) of u = x/∥x∥ ∈ Sp−1, x ∼ h(r(x))dx, based on

ui = xi/∥xi∥, i = 1, . . . , n.

Assume the equivariant function r : X → R>0 under the action of the positive real

numbers is continuous and normalized so that
∫
Sp−1 r(u)

−pdu = 1, and that L : R≥0 → R≥0

is bounded and satisfies
∫∞
0

L(v)v(p−3)/2dv > 0 and
∫∞
0

supw: |
√
w−

√
v|<1 L(w) · v(p−3)/2dv <

∞. Moreover, suppose η = ηn > 0 is taken in such a way that ηn → 0 and nηp−1
n / log n →

∞ as n → ∞.

Then, Ẑn = {f̂n(u)1/pu : u ∈ Sp−1} is a strongly consistent estimator of the shape

Z = {x ∈ X : r(x) = 1} of the density contours of the star-shaped distribution in the

sense that the Hausdorff distance δH(Ẑn, Z) between Ẑn and Z satisfies

δH(Ẑn, Z) → 0 (n → ∞) a.s.

In addition, Ẑn =
∪

0≤c≤1 cẐn is a strongly consistent estimator of Z =
∪

0≤c≤1 cZ:

δH(Ẑn,Z) → 0 a.s.

It can easily be seen that L(v) = e−v and L(v) = 1(v < 1) (= 1 if v < 1 and 0

otherwise) satisfy the conditions of Theorem 4.1.

5 Simulation studies

Results of simulation studies will be demonstrated in the talk.
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6 Concluding remarks

In this paper, we proposed a nonparametric estimator of the shape of the density con-

tours of star-shaped distributions, and proved its strong consistency with respect to the

Hausdorff distance.

We can introduce the location parameter and consider a star-shaped distribution whose

density level sets are star-shaped with respect to the location. In that case, one possibility

for estimating the shape is to plug in an estimator of the location and use our proposed

nonparametric estimator of the shape. We might be able to estimate the location by

characterizing it in some way. For example, if the star-shaped distribution may be assumed

to have symmetry with respect to the location and a finite first moment, the location

can be characterized as the mean and may be estimated by, e.g., the sample mean. If,

instead, h( · ) in (1) is strictly decreasing, the location can be regarded as the mode and

be estimated by means of various methods for estimating the multivariate mode.
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