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Abstract The present article reviews the theory of data privacy and confiden-
tiality in statistics and computer science, in order to modernize the theory of
anonymization. This effort results in the mathematical definitions of identity dis-
closure and attribute disclosure applicable to even synthetic data. Also differential
privacy is clarified as a method to bound the accuracy of population inference.
This bound is derived by the Hammersley-Chapman-Robbins inequality, and it
leads to the intuitive selection of the privacy budget ϵ of differential privacy.
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1 Introduction

The current practice of publishing official statistics faces distrust about the protec-
tion of identity. President’s Council of Advisors on Science and Technology (2014,
pp. 38-39) states that “anonymization of a data record might seem easy to im-
plement,” but “as the size and diversity of available data grows, the likelihood of
being able to re-identify individuals grows substantially,” and “(anonymization) is
not robust against near-term future re-identification methods.”

The background of these statements seems the realized failures of anonymiza-
tion in a private sector. Anonymization is not easy to implement at all. It actually
requires artisanship for a future-proof data product. Therefore, apprentices have
made errors.

Statisticians should recognize that more efforts to theorize the artisanship of
anonymization. So far the statistical theory of anonymization lacks the firm defi-
nition of anonymity, which should also cause the distrust.

In computer science, Dwork (2006) proposes the notion of Differential Privacy
(DP), which is the package of a clear definition of data protection and a method
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easy to implement. These two factors are what statisticians’ artisanship lacks.
Accordingly, researches on DP have exploded. Zhu et al. (2017) guide us around
a part of them.

Even the practice of official statistics has been affected by DP. Reiter (2019)
favorably introduces the role that DP can and does play in official statistics. How-
ever, as Ruggles et al. (2019) state, DP “goes far beyond what is necessary to keep
data safe under census law and precedent.”

The goal of DP is more stringent than that of traditional statistical practices.
Hence DP tends to result in useless data for scientific purposes. Ruggles and others,
in particular Bambauer et al. (2013), criticize this little concern about data users.
Weak statistical protection combined with other institutional measures constitutes
our wisdom to publish usable data.

However, Dwork’s easy protection method just adds a noise from the Laplace
distribution; Kotz et al. (2001) provide a monograph on this distribution. Additive
noise has been a part of statistical anonymization methods. Also DP is defined
using the likelihood ratio, with which statisticians are familiar. We may be able
to modernize the statistical theory of anonymization with the help of DP.

Therefore, the present article reviews the theory of data protection in statis-
tics and computer science. This effort results in the mathematical definition of
the traditional targets of statistical protection: Identity disclosure and attribute
disclosure. The scope of these new definitions embraces even synthetic data. Also
the key challenge of DP, the selection of the level of protection, is solved using sta-
tistical theories. These contributions develop after we realize that the disclosure
of information about a population unit is not necessarily confined to units present
in published data.

In the remaining, Section 2 reviews the theory of anonymization. Also the
formal notion of disclosure is constructed. Section 3 reviews DP from a view point
of statistical finite population analysis. As a result, we obtain reasoning to control
the level of protection brought by DP. Section 4 concludes that the current practice
of official statistics can be supported by DP.

2 Modernizing the Theory of Anonymization

2.1 Statistical Disclosure Control

Confidentiality in statistics indicates that data collected by a statistical agency are
to be strictly confidential and used exclusively for statistical purposes (Principle
6, Fundamental Principles of Official Statistics (A/RES/68/261 from 29 January
2014), the U.N.). The same terminology in a computer security context implies to
ensure that information is accessible only by authorized parties (ISO/IEC 27000),
but the present article concerns confidentiality in the statistical sense. Anderson
and Seltzer (2009) describe the historical development of confidentiality notion in
the U.S..

Empirical evidence such as Singer et al. (1993, 2003) supports a fact that the
pledge of confidentiality promotes honest responses on a survey. Hence statistical
agencies have long been developing methods for the protection of confidentiality.
On the other hand, official statistics exists to reveal facts. This intrinsic nature of
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statistics contradicts the protection of confidentiality. Therefore, publishing statis-
tics confronts a tradeoff between the risk of the breach of confidentiality (disclosure
risk) and the analytical validity of statistics (utility).

Endeavors to solve this dilemma constitute a field of researches called Statis-
tical Disclosure Control or Limitation (SDC or SDL). For general understanding
around SDC, readers should refer to Duncan et al.’s (2011) textbook. More recently
Templ (2017) specializes in the microdata protection of SDC, and this textbook
leads to hands-on understanding of important concepts by supplied codes based
on R packages: sdcMicro and simPop.

A significant part of SDC consists of contributions from statistical agencies; see
Doyle et al. (2001) or Hundepool et al. (2012) for example. This fact characterizes
SDC in two ways. First, SDC is practical, sticking closely to the real issue of a
statistical agency. Willenborg and de Waal’s (1996, 2000) lecture notes represent
this nature. Second, since statistical agencies are amongst the earliest adopters of a
relational database, they have been promoting collaboration between statisticians
and computer scientists. This collaboration produces, e.g., an enlightening volume
edited by Nin and Herranz (2010). Also a series of biennial proceedings of Privacy
in Statistical Databases after Domingo-Ferrer and Tora (2004) symbolizes the
long-lasting cooperation.

2.2 SDC among Privacy Researches

The practical nature of SDC, however, tends to limit a view point to being field
specific. It is important to recognize that privacy researches outside official statis-
tics are related to SDC.

Conceptualizing privacy is an ongoing research issue. Readers interested in
fundamental arguments on privacy should refer to Solove (2008). Terminology on
privacy properties is proposed by Pfitzmann et al. (2010), and Deng et al. (2011)
consider some of them including unlinkability, anonymity and pseudonymity, plau-
sible deniability, undetectability and unobservability, and confidentiality. Their ar-
gument from the view point of secure software engineering should be intriguing to
many statisticians.

Since the 1970s the law provides people with control over their data to protect
privacy. According to Solove (2013), this “privacy self-management” approach is
so widely accepted, although it may be no longer sound enough. Lowrance (2012)
states that confidentiality serves privacy, which is in the sense of self-management.
In fact, a sense of control over one’s information promotes participation in a busi-
ness service or a survey, similarly to the pledge of confidentiality; see Stewart and
Segars (2002) for empirical evidence.

Because social regulations have been relying on privacy self-management, con-
cerns on the control of information, which is the goal of SDC, are prevailing
amongst fields. For example, health research needs to protect private data. El
Emam and Arbuckle (2013) provide a technical reference in this field, which cites
many results of SDC. Dennis (2000) otherwise composes a non-technical guide
for medical practitioners to protect privacy. We confirm from this work that a
practice never stands without institutional limitations such as laws, regulations,
guidance and governance. Hence it is natural for SDC to restrict itself within sta-
tistical institutions, but there is actually a common part among institutions. From



4 Nobuaki Hoshino

Lowrance’s (2012) international comparison on the institution of health research,
although some of its portion is inevitably outdated, we learn that the identifica-
tion of an individual is universally unacceptable. As in SDC, anonymization or
de-identification is of primary importance.

Computer scientists too share our interest in the control of information, but
they are relatively free from institutional limitations. For example, they do not
necessarily deem a statistical agency as a trusted curator of data. This point of
view is hard to emerge within SDC. The technique of secure multi-party computa-
tion facilitates analyzing distributed data without a curator to conduct a survey;
see, e.g., Muralidhar et al. (2016). In statistics the randomized response method
(Warner, 1965) presumes the curator of data untrusted. Warner (1971) himself
notes that a randomized response method serves SDC; the disclosure of confiden-
tial information can be avoided by reporting only the sum of a true value and a
random value from a known distribution. A randomized response model is adopted
by Google’s RAPPOR to prevent a privacy breach (Erlingsson et al., 2014), which
is frequently mentioned by computer scientists.

Deng et al. (2011) discriminate between hard privacy and soft privacy. The
former aims data minimization, based on the assumption that personal data should
not be divulged to third parties. The latter aims to provide data security and
process data with specific purpose and consent, based on the assumption that a
data subject is unable to control personal data and has to trust a data curator.

Hard privacy is pursued in, e.g., cryptography, reducing needs to trust other
entities. On the other hand, official statistics seeks soft privacy. It is very important
to recognize that schemes for hard privacy such as DP lead to lower utility since
it is stronger than soft privacy.

Realized privacy breaches such as AOL’s scandal on publishing web search
queries (Barbaro and Zeller, 2006) depict the need of privacy researches off a
statistical agency. Even though some of them are impractical and unreal, they
consist of fertile soil. After Agrawal and Srikant (2000) and Lindell and Pinkas
(2000), the field of Privacy Preserving Data Mining (PPDM) blooms in computer
science. PPDM enables data mining while controlling disclosure. A volume of
reviews by Aggarwal and Yu (2008) is very informative on this field. See also
Mendes and Viela (2017) for a newer review.

PPDM assures the validity of data analysis in only designed cases, by which
disclosure is easier to control. An example queries a database interactively. Dwork
(2011) puts “the advantage of the interactive approach is that only the ques-
tions actually asked receive responses.” However, exploratory data analysis (Tukey,
1977) absolutely needs published data.

A branch of PPDM called Privacy Preserving Data Publishing (PPDP) under-
takes to disseminate data in a private manner. This goal is similar to that of a
statistical agency, but the most essential difference seems the scope of data types.
A statistical agency traditionally publishes tables and microdata. On the other
hand, PPDP deals with more types including transaction data, trajectory data,
social networks, and textual data; see Fung et al. (2011) for these contexts.
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Table 1 Conditions of identification (Marsh et al., 1991)

(a) Published data are measured consistently with filed key variables (i.e., no
misentry or misclassification, etc.).

(b) Published data contain the target.
(c) The target is a population unique. That is, no other entity in a population

has the same attributes on key variables as those of the target.
(d) The population uniqueness of the target is ascertained.

2.3 Spontaneous Reform of SDC

The principal hardship to publish nontraditional data is that it may be unreal-
istic to assume that attackers or adversaries, who want to identify an individual,
know only a limited number of attributes of targets. These known attributes are
called key variables or quasi-identifiers (Dalenius, 1986), discriminating from direct
identifiers such as a name or an address.

In many countries including Japan, publishing official statistics legally requires
the unidentifiability of survey respondents, which is not the same concept as con-
fidentiality. This difference, however, enables data users to statistically estimate
confidential or sensitive variables: A sensitive variable is regarded as unknown in
the following, although non-sensitive variables can be unknown.

The well-established rationale of publishing official statistics employs a logic
that an individual can not be identified among multiple individuals of the same at-
tributes on key variables. It is assumed that an attacker files identified individuals
whose attributes are partly known, and searches published data for those who have
the same attributes as those of a filed individual. Then Marsh et al. (1991) define
the success of the identification of a filed individual, or a target, as the product
of 4 conditions summarized in Table 1. Actually, masking for de-identification or
anonymization aims to preclude at least one of these 4 conditions. For instance, k-
anonymity (Sweeney, 2002) is sufficient for population uniqueness (Condition (c))
to fail, since published data are masked so that multiple records have the same
attributes.

It is worthy of note that population uniqueness (Condition (c)) must be veri-
fied (Condition (d)) for the success of identification, since Condition (d) is often
neglected. The author considers that the verification of population uniqueness
needs the complete frame of a subpopulation that includes the target to be ver-
ified (Hoshino, 2016). For example, to verify the uniqueness of an attorney, an
attacker needs the whole list of attorneys, which is only a part of a population.
However, completing the frame of a subpopulation is not always easy. We should
bear the likelihood of Condition (d) in mind for assessing identification risk.

The key variables of official statistics are often regarded as basic demographic
variables, which are not many. Then population uniques can be limited enough
to declare that individuals are de facto unidentifiable. Rocher et al. (2019) point
out that the likelihood of population uniqueness (Condition (c)) may be correctly
evaluated even if population uniques are limited, but few population uniques imply
low likelihood for ordinary people to find their acquaintances, i.e., filed people, in a
published data set (Condition (b)). The likelihood of identification is the product
of the likelihoods of the 4 conditions, which can be low even though a part of them
is high. Disclosure control is often tailored for ordinary people in official statistics.
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A data broker who has the full information of people is not necessarily assumed
in order to provide useful data; see Brandt et al. (2008, p.140) for example.

The reasoning above essentially needs the limited selection of key variables.
If key variables are so many that almost all records are population uniques, then
ordinary people would identify their neighbor in published data. The situation was
different from publishing, e.g., a long sequence of web search queries, which can
be many key variables to identify an individual, and the assumption of limited key
variables has been mostly plausible concerning official statistics.

However, social scientists urge to redefine the practice of official statistics, as
once their demand opened their access to microdata. They want more richly de-
tailed data of individuals, firms and other organizations. In particular, longitudinal
or panel surveys, which contain a time series of key variables, are unprecedentedly
required by researchers. The cost of longitudinal surveys can delay the reform
of official statistics, but linking or matching records of the same entity among
different files can satisfy researchers’ demand at relatively little cost.

Linked data can be produced even if the same entity is not included among
different files. Statistical matching, distinguished from exact matching, estimates
the unobserved attributes of an entity, and the estimates are linked to its observed
attributes. Those interested in statistical matching should refer to D’Orazio et al.
(2006).

At the frontier of social sciences, researchers increase access to linked data from
multiple surveys and administrative records through cumbersome administrative
and legal arrangements (Butz and Torrey, 2006). Moreover, the use of linked data
often requires traveling to a secure on-site data center, which is called “on site” in
Japan (Nakamura, 2017), or submitting statistical software to a remote analysis
system. O’Keefe (2015) mentions some examples of restricted accesses of official
statistics.

The reason of these inconveniences for researchers is apparently the high risk
of identification inherent in linked data. Firstly, linked data can be valuable in
business. For example, Facebook links its own data with that of a data broker
(Datalogix) to market fish oil (Goel, 2014). The rise of economic value attracts
more attackers. Secondly, the number of key variables monotonically increases
by linking records, which implies many population uniques. Rocher et al. (2019)
claim that 99.98% of Americans would be correctly identified using 15 key vari-
ables. Sweeney (2000) guesses that 87% of Americans are likely to be unique with
respect to only 3 key variables: {5-digit ZIP, gender, date of birth}. Geographic in-
formation such as a ZIP code is widely regarded as a strong key variable, and thus
it is swapped in producing Anonymized Data of the Japanese census for example.
However, we should note that Sweeney’s guess employs the pigeonhole principle
in an unconvincing way.

Consequently, as National Research Council (2007) put, linked data are usu-
ally not publically available due to confidentiality concerns. Using linked data is
generally allowed within a “safe” situation, which is ensured not only by statisti-
cal controls but also by managerial controls. Ritchie (2008, 2017) conceptualizes
provision for data access as Five Safes of control dimensions: safe projects, safe
people, safe data, safe settings and safe outputs.

Nevertheless, restricting data access impedes researches. It also consumes non-
negligible resources of statistical agencies, which implies that they may have dis-
incentive to promoting researches (Fienberg, 2005). Because safe public-use data
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can solve these issues, efforts to produce such linked data have been observed.
The most prominent one seems the Survey of Income and Program Participation
(SIPP) Synthetic Beta, which is a U.S. Census Bureau product that links records
from a household survey with administrative tax and benefit data; see Benedetto
et al. (2018) for further details. This ongoing project employs the approach of
synthetic data initiated by Rubin (1993).

2.4 Synthesis for Publishing Unsafe Data

The original idea of synthetic data derives from the solid theory of multiple im-
putation for missing values; see a classic textbook by Rubin (1987). Adapted for
SDC, it regards the unobserved part of a population as missing. Then missing
values are randomly imputed several times in order to express the uncertainty of
imputation, and from each imputed population random samples are drawn to be
published. Drechsler (2011) provides an overview of this context.

Synthetic data can consist of records that have no correspondence to real enti-
ties. Then the identification of a record has no direct sense, and this type of data
should be less difficult to publish. However, publishing only random values, which
is called fully synthetic approach, may overprotect data. By limiting synthesis
only to an unsafe part, the utility of published data can improve. This approach
is known as partial synthesis (Little, 1993). It is beneficial also because of the less
burden of modeling a population. Statistical products such as the SIPP Synthetic
Beta employ partial synthesis. As regards the estimation of the uncertainty of syn-
thetic data analysis, Raab et al. (2017) state that distinction between fully and
partially synthetic data is not meaningful, though.

Aforementioned statistical matching is closely related to imputation. It also
estimates unobserved attributes of entities, but it does so generally with less in-
formation on association between observed and unobserved variables. Imputation
in a single file can exploit observed association among variables of the same entity,
which is usually impossible for statistical matching since a different file contains
different entities. Statistical matching is yet another view of synthetic data.

Beckman et al. (1996) propose the use of a synthetic population or a pseudo-
population in microsimulation or agent-based modeling. Heard et al. (2015) review
these literatures in economics, finance, ecology, biology and epidemiology, where
researchers simulate actions and interactions of entities within a system or a pop-
ulation to gain insight into a complex system. Regarding SDC, Quatember (2015)
mentions that the effect of data masking can be evaluated by sampling from a
pseudo-population.

Templ et al. (2017) review main approaches to the generation of a pseudo-
population. According to them, the most frequently used method is sampling
from an empirical distribution (i.e., observed proportions) with the restriction
of marginal population frequencies given by census tables. Joint population fre-
quencies are commonly estimated by Iterative Proportional Fitting (IPF, Deming
and Stephan, 1940) or raking; see Bishop et al. (1975) for the understanding of
IPF.

Unfortunately, census tables are not always available. Then population fre-
quencies need to be estimated. Quatember (2015) relies on the Horvitz-Thompson
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(HT) estimator, which multiplies a sample frequency by the inverse of its inclu-
sion probability; see Horvitz and Thompson (1952). In other words, an empirical
distribution is adjusted reflecting survey weights.

However, when an inclusion probability is low, the HT estimator is useless
notably for small population frequencies because of its large variance. This issue
matters to linked data because they generally consist of small frequencies: Samples
are scattered in a relatively high dimensional space. Many statistical applications
suffer from this phenomenon, which is called Large Number of Rare Events (LNRE)
by Khmaladze (1987). Baayen (2001, Section 2.4) provides the numerical examples
of LNRE in linguistic. Even the frequency of a population frequency (Good, 1953)
is not a modest objective to estimate. Its unique unbiased estimator is useless as
Shlosser (1981) explains. In other words, sampling variations conceal population
uniqueness.

This is the reason why population uniques are estimated by various models
since Bethlehem et al. (1980). A model supplies auxiliary information to stabilize
the estimation with the loss of unbiasedness. For example, Rocher et al. (2019)
claim that the likelihood of population uniqueness for each record can be better
estimated using correlation among attributes. Their estimated likelihood, however,
never reflects difference between a model and a true population. This deterministic
difference obstructs any model to rigorously prove population uniqueness.

The large stochastic difference between samples and a population can be ex-
ploited to improve utility and safety simultaneously. Fienberg (1994) proposes to
publish bootstrap (Efron, 1979) samples from an empirical distribution smoothed
by auxiliary information such as census tables, past surveys and nonsampling er-
rors (from editing, matching, nonresponse, etc.). This smoothing works as masking
that affects Condition (a) of Table 1, and published data provide better inference
on a population. Moreover, replicates by bootstrapping enable us to measure a
between-replicates variation as multiple imputation; see Fienberg et al. (1998) for
a more detailed argument on this approach.

The smoothing of an empirical distribution is a type of population modeling.
It should be of better utility if it more resembles a population in which the users of
data are interested. This principle is widely accepted for generating synthetic data;
Snoke et al. (2018) measure the utility of synthetic data by distributional similarity
between the population of raw data and a model used to generate synthetic data.
Although they state that the risk measure of synthetic data is under development,
it is reasonable to measure that risk using the utility measure reversely. As stated
at the very beginning, disclosure risk mirrors utility.

Actually, similarity between raw data and published data is frequently used to
evaluate the disclosure risk of perturbation or untruthful masking such as additive
noise (e.g., Brand, 2002). Most of perturbation is random, where average similarity
is usually evaluated, and this averaging measures distributional similarity between
raw data and a model used to generate perturbed data.

The above utility measure of synthetic data examines the population of raw
data instead of raw data, which results from the difference of the population of
interest. A utility measure concerns a data user. Hence the examined population
has to be one in which a data user is interested for analysis. By contrast, a risk
measure concerns an attacker who tries to identify a record. Then the examined
population can be raw data, which are the population for attackers who know (a
part of) survey respondents. If survey respondents are assumed to be unknown,
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the population should be the sampling frame of raw data. This is the case of
traditional risk measures based on population uniques.

We should note that the estimation of the sampling frame of raw data is equiva-
lent to the estimation of population frequencies, which is difficult as stated before.
Especially in the case of linked data, the curse of dimensionality arises. That is,
raw data are too sparse to estimate a high dimensional population as Gottschalk
(2004) points out. Difficult estimation leads to the uncertain measurement of risk,
and thus it is understandable to measure an object that does not require estima-
tion. This is another reason why a sampling frame is usually neglected in the risk
measurement of perturbation.

To summarize, the risk of synthetic data should be measured by the distribu-
tional similarity between the population of raw data and a model used to generate
synthetic data, where the population is set depending on whether an attacker
knows survey respondents or not.

This way integrates random perturbation and random synthesis. The follow-
ing Example 1 demonstrates that common discrimination between synthesis and
perturbation is meaningless. Fully synthetic data can be safe not because they do
not contain real entities but because they can be very different from the popula-
tion of raw data. All kinds of random modification of raw data such as synthesis,
perturbation and subsampling require a unified treatment as random masking.

Example 1 Let us publish the height of an individual: 152 cm. Synthesis may replace

this value with a sample from the normal distribution with mean 152 and variance 1,

which is an infinite population obtained by smoothing the datum. Perturbation may

add a noise subject to the standard normal distribution to the datum. The both cases

of results have the same distribution.

2.5 Formal Notion of Disclosure

We now reconsider identification. Identification is harmful when it entails identity
disclosure, which is explained as “(it) occurs when a data subject is identified from
released data” by Duncan et al. (2011, Glossary). What occurs is that the sensitive
variables of a unique entity take one combination of values with probability one.
In other words, identification restricts the conditional distribution of sensitive
variables on a point, given key variables. This degeneration of the conditional
distribution occurs since only one entity is distributed. Therefore, we employ the
following Definition 1 of identity disclosure.

Definition 1 The identity disclosure of a target occurs if and only if the following two

properties of the population of the target are shown: (I) the conditional distribution of

sensitive variables given that key variables take the values of the target and (II) its size

is one.

In Definition 1, “size” expresses the number of entities that have the same
attributes as those known of the target; see the following Example 2.

Example 2 Let us consider publishing a data set of 3 variables: Sex, Height and Age.

For simplicity, they all are dichotomous as {F, M}, {T, S} and {O, Y}, respectively.
Then the sample space or the set of all possible combinations of attributes is

{(F, T,O), (F, T, Y ), (F, S,O), (F, S, Y ), (M,T,O), (M,T, Y ), (M,S,O), (M,S, Y )} = Ω.
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The element of Ω is called a point. Population frequencies on these points are denoted

by nFTO, nFTY , nFSO, . . . , nMSY , which sum up to n.

For an attacker who does not know the target’s sex, height and age, identity disclo-

sure is equivalent to know (i) the unconditional distribution of the population, which

is relative frequencies over Ω: (nFTO/n, nFTY /n, nFSO/n, . . . , nMSY /n), and (ii)

n = 1.
In this case, (ii) implies that only one point of Ω can have a positive probability.

Hence the distribution of the attributes degenerates, and thus knowing (i) maps the

target to the attributes of, say, (F, T,O). Also (ii) implies that the attributes of (F, T,O)
is inversely mapped to the target. This bijection between the population of the target

and {(F, T,O)} is the exact sense of identification under Definition 1.

Next we consider an attacker who knows the target’s Age=O. Then identity disclo-

sure is equivalent to know (i’) the conditional distribution given Age=O or (nFTO/(nFTO+
nFSO +nMTO +nMSO), nFSO/(nFTO +nFSO +nMTO +nMSO), nMTO/(nFTO +
nFSO+nMTO+nMSO), nMSO/(nFTO+nFSO+nMTO+nMSO)), and (ii’) nFTO+
nFSO + nMTO + nMSO = 1.

Similarly, (ii’) implies that the conditional distribution given Age=O degenerates.

Also implied is the bijection between the population of the target and the subspace of Ω.

When an attacker’s target is not included in published data, Condition (b) of
Table 1 is not satisfied and thus the identification of the target does not happen.
Hence fully synthetic data are claimed to be safe. However, even if the target is
not included in published data, the conditional distribution of sensitive variables
and its size may be correctly estimated. It is noteworthy that the population by
definition contains the target.

Irrespective of the presence of the target in published data, identity disclosure
in our sense can occur. The following Example 3 demonstrates this possibility,
where the estimation of the size is not statistical, though.

Example 3 Let us synthesize the raw data of {152 cm, the host and co-executive pro-

ducer of Fresh Air}. Suppose that 10000 synthetic records of the host and co-executive

producer of Fresh Air are published, in which each height is a sample from the normal

distribution with mean 152 and variance 1. Then observing these synthetic data, an

attacker who knows only the occupation of Terry Gross would guess her height rather

correctly at the average of 10000 heights. This is because the number of individuals

who are the host and co-executive producer of Fresh Air is one in a population of hu-

man beings and the conditional distribution of height given that occupation is almost

revealed.

Dwork et al. (2017) review a tracing attack, where an attacker wants to deter-
mine if the target is present in published data or not. As they claim, mere presence
in data can be highly sensitive information, but presence itself is not disclosive.
It causes disclosure only when inference on unknown information follows. Terry
Gross loses nothing even if her presence in the nominal list of living females is
correctly determined.

Closely related to identity disclosure, attribute disclosure is explained as “the
disclosure of information about a population unit without (necessarily) the identifi-
cation of that population unit within a data set” by Duncan et al. (2011, Glossary).
It implies that the conditional distribution of sensitive variables degenerates, where
the size is not necessarily one.
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In Example 2, the unconditional distribution of the attributes can degenerate
even if n > 1. Then the attacker is certain about the attributes of the target because
any member of the population of the target is mapped to a unique combination
of attributes (surjection). Its inverse mapping, however, is defined if and only if
n = 1. In other words, an entity who has the unique attribute may not be the
target when n > 1. We note that the size condition is necessary for identification.

Therefore, we employ the following Definition 2 of attribute disclosure, which
includes Definition 1 as a special case. It is noteworthy that attribute disclosure
can also occur without the presence of the target in published data.

Definition 2 The attribute disclosure of a target occurs if and only if the following

two properties of the population of the target are shown: (I) the conditional distribution

of sensitive variables, given that key variables take the values of the target and (II) it

degenerates (i.e., takes one combination of values with probability one).

Clinging to the notion of presence impairs our understanding of disclosure.
Actually presence is irrelevant to disclosure. Therefore, presence control is indirect
and inefficient in disclosure control. A direct objective to control disclosure is the
certainty of population frequencies.

Let us consider Example 2 again. For an attacker who knows the target’s
Age=O, identity disclosure is uncertain if it is uncertain whether nFTO +nFSO +
nMTO + nMSO = 1. Similarly, for an attacker who knows the target’s Age=O
and Height=T, identity disclosure is uncertain if whether nFTO + nMTO = 1 is
uncertain. Generalizing this consideration, if every population frequency over Ω is
uncertain about uniqueness, then identity disclosure is uncertain for any attacker.

Analogously, certainty about a population frequency being zero causes at-
tribute disclosure because the population frequency of complemental attributes
is necessarily positive, thus degenerates, owing to the fact that the population is
not empty. Therefore, every population frequency must be uncertain about zero
for no attribute disclosure to be certified. .

Certainty about a large population frequency may not seem problematic, but
differencing from outer information of a population frequency, which may be pro-
vided by census tables, could result in disclosure. This issue is fundamental to the
protection of contingency tables; see a methodological introduction by Giessing
(2004) to the famous software of tabular data protection: τ -ARGUS. Contingency
tables provide marginal frequencies, which are simultaneous equations that solve
the range of the frequency of a cell. Therefore, when many marginal frequencies
are available, the ranges of frequencies could be narrow enough for disclosure to
occur. This sophisticated version of differencing is called reconstruction attack
(Dinur and Nissim, 2003).

An important observation from tabular data literatures is that outer infor-
mation may invalidate deterministic uncertainty such as an interval expression.
Deterministic information enables an attacker to deduce a deterministic assertion.
Because disclosure is a deterministic concept, introducing stochastic uncertainty
to forestall deduction is a good methodology in principle. We do not have to worry
about infinite possibilities of types of outer information, provided that the uncer-
tainty of a population frequency is furnished by random masking.

In conclusion, every population frequency, regardless of its value, ought to
be stochastically uncertain to prevent definite disclosure in any occasion. This
objective does not depend on the selection of key and sensitive variables.
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The notions of key variables and sensitive variables are very much criticized as
subjective, vulnerable to misselection and so on. According to Fung et al. (2010),
the selection of key variables is regarded as an “open problem.”

However, assuming key variables is advantageous to publish useful data. If
a specific selection of key variables is valid, then it suffices to make a part of
population frequencies uncertain. We should not waste knowledge on attackers
or outer information. In order to select key variables objectively, Hoshino (2016)
proposes to estimate a high percentile of the attackers’ distribution over the ability
of identification, which is expressed as the combination of key variables that he or
she can use.

Now we set our notation to formally state a unified treatment of random mask-
ing. It is worthy of note that deterministic masking such as recoding (generaliza-
tion) or suppression collapses the sample space.

Suppose that the sample space consists of J points, each of which is indexed
by j. The population frequency of the jth point is nj , and n := (n1, n2, . . . , nJ ).

The sum of population frequencies is n :=
∑J

j=1 nj . The frequency of the jth

point in published data is mj , and m := (m1,m2, . . . ,mJ ). The sum of published

frequencies is m :=
∑J

j=1 mj .

Our definition of disclosure is valid for a continuous sample space. However,
we only consider the discrete case, which covers real data. Also, taking J → ∞
approximates the continuous case; see an example of this limiting argument by
Hoshino (2009).

A microdata set is equivalent to the set of frequencies over the sample space,
and we are considering to publish not a frequency table but microdata. This issue
is closely related to histogram publishing known in PPDP; see a statistical pa-
per by Wasserman and Zhou (2010). Histogram publishing allows mj to be a real
number, but microdata publishing needs mj to be a nonnegative integer. Differ-
entially private histogram publishing by Ghosh et al. (2012) applies an additive
noise from the discrete Laplace distribution (Inusah and Kozubowski, 2006) to nj .
Although mj can then be a negative integer, yet censoring at zero remedies this
issue. Statisticians should refer to Rinott et al. (2018) for more information.

A random masking is the distribution of m whose support is

M := {m : mj ∈ {0, 1, . . . ,m}, j ∈ {1, 2, . . . , J},
J∑

j=1

mj = m}.

The parameter space of n is denoted by

N := {n : nj ∈ {0, 1, . . . , n}, j ∈ {1, 2, . . . , J},
J∑

j=1

nj = n}.

Regarding n as a parameter vector stems from the traditional view of finite pop-
ulation sampling; see, e.g., Godambe (1955).

DP is a general notion to evaluate random masking, and the next section
considers DP in the framework of statistical estimation. Actually, DP bounds the
variance of the estimator of a parameter. As we can see in the following Example
4, the statistical theory tells us the accuracy of the estimation of nj .
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Example 4 Let us assume that an attacker knows survey respondents. Then n becomes

the frequency vector of raw data. Its bootstrap samples m are subject to the multino-

mial distribution P(m;n) = m!
∏J

j=1(nj/n)
mj/mj !. In this case, mj is sufficient for

nj , and thus we need to consider only the marginal distribution of mj to evaluate the

correctness of the estimation of nj . The margin of mj is subject to the binomial distri-

bution P(mj ;nj) = m!(nj/n)
mj/mj !(1− nj/n)

m−mj/(m−mj)!. If m = n, then mj

is the unbiased estimator of nj . It follows V(mj)/nj = (1− nj/n), which increases as

nj decreases. In this sense, bootstrapping is more protective for smaller nj .

3 Differential Privacy

3.1 Masking for Apprentices

Numerous privacy notions have been proposed by computer scientists, neglect-
ing the utility of data. Some renowned examples are given below. k-anonymity
(Sweeney, 2002) damages the data of isolated entities seriously. ℓ-diversity (Machanava-
jjhala et al., 2007) prohibits the conditional distribution of sensitive variables given
key variables to degenerate. It prevents attribute disclosure in the sense of Def-
inition 2, but the subsequent statistical analysis of sensitive variables should be
heavily biased. t-closeness (Li et al., 2007) masks data so that key variables and
sensitive variables are almost independent. This mask completely destroys statis-
tical analysis because researchers use data in order to know relationship between
demographic (key) variables and unknown (sensitive) variables.

Variants of these notions mask data until some syntactic condition is met,
so that the ability of an attacker to link key variables to sensitive variables is
restricted. Therefore, Clifton and Tassa (2013) call these notions syntactic models.

Various attacks have been proposed to defeat those syntactic models, and a
loser develops another model, which invites another attack. The repeat of this
updating strengthens the definition of privacy. According to Dwork et al. (2017),
DP “was first proposed in 2006 and so far has not required strengthening.” What
is so far required is weakening.

Syntactic models protect given data, which is orthodox in SDC. On the other
hand, DP is the property of a random masking. This way is more akin to that of
a frequentist who is interested in the long-run property of a random variable.

Let us see Definition 3 of DP below, where A does not depend on a specific D

since this dependence can be decisive to infer D from realized A(D).

Definition 3 (Dwork, 2006) Let D be a data set. The space of D is denoted by D.

The random masking of D is denoted by A(·). The support of A(·) is denoted by A. ∆

denotes a unit change. A random masking A(·) is ϵ-DP (Differentially Private) if and

only if

P(A(D +∆) ∈ S)/P(A(D) ∈ S) ≤ exp(ϵ) (1)

for all S ⊂ A, for all D ∈ D and for all ∆ such that D +∆ ∈ D.

The left hand side of eq. (1) is regarded as the evidence of a unit change of
D. As P(A(D +∆) ∈ S) departs from P(A(D) ∈ S), the unit change ∆ should be
easier to detect by observing masked results. Hence the left hand side of eq. (1) is
bounded around one to conceal∆. It might be noteworthy that no random masking
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is ϵ-DP when ϵ is negative, since by definition D+∆ and D must be exchangeable
in eq. (1). Thus in literatures ϵ > 0. As ϵ increases, ∆ is more revealed, and the
tuning parameter ϵ in eq. (1) is called a privacy budget.

Observing Definition 3, we note that any random masking with the same like-
lihood function up to a constant multiplication provides the same evidence of a
unit change. This irrelevance of statistical evidence to any structure that does
not affect likelihood is called the likelihood principle; see Birnbaum (1962). Ac-
cordingly, DP is irrelevant to whether random masking is synthesis, perturbation
or subsampling. This is the unified treatment of random masking motivated by
Example 1.

Eq. (1) is required to hold for the most detectable case of D ∈ D. This mini-
mization of the maximum information enables even an apprentice to mask data.
It contrasts with the current practice of SDC, which needs an artisan who tai-
lors masking depending on D. Expelling artisanship, however, costs utility very
much. Therefore, the essential idea of Soria-Comas et al. (2017) is to set D = {D}.
Likewise, many variants of DP have been proposed to escape from the minimax
reasoning of the original DP.

Approximate DP (Dwork et al., 2006a) requires for positive δ

P(A(D +∆) ∈ S) ≤ exp(ϵ)P(A(D) ∈ S) + δ (2)

instead of eq. (1). Obviously, approximate DP is equivalent to DP when δ = 0.
Approximate DP allows exceptions to eq. (1) for small P(A(D + ∆) ∈ S). This
dependence on the absolute value of P(A(D + ∆) ∈ S) implies that δ has to be
tuned depending on the width of the parameter space, which is quite artisanal.
Exceptions to eq. (1) can be controlled stochastically in many senses as Meiser
(2018) discusses. Otherwise Nissim et al. (2007) consider ϵ-DP noise that depends
on D, where the amount of noise is carefully designed not to reveal D, while Dwork
(2011) states “To satisfy differential privacy, the noise must be independent, not
only of the true answer, but also the size of the database.”

More relaxations of DP develop by considering the interpretation of DP, since
they have to protect privacy in some sense. Typical interpretations are reviewed
in the next section.

3.2 Semantics of DP

What is protected by DP? The answer to this question depends on the interpre-
tation of the unit change ∆ in eq. (1). Dwork (2006) interprets ∆ as the inclusion
(or exclusion) of a target. According to Dwork (2011), a new privacy goal is to “
minimize the increased risk to an individual incurred by joining (or leaving) the
database.”

This original interpretation derives from the cryptographic interest in presence,
which is irrelevant to disclosure as we have seen. Also ∆ can be the inclusion of
someone with the same attributes as those of the target. Then the left hand side
of eq. (1) is not even the evidence of the presence of the target in published data.
Nevertheless, the original interpretation dominates in the literature. The notion
of presence again impairs our understanding.
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When we regard D as a parameter (vector) and D as its parameter space, the
left hand side of eq. (1) is the Likelihood Ratio (LR) of ∆ to its nonexistence. This
form suggests the hypothesis test of a unit change.

The composite hypothesis of the existence of some ∆ can be tested simply
between the most indistinguishable hypotheses of the existence and the nonex-
istence. Also the Neyman-Pearson lemma (Neyman and Pearson, 1933) assures
that the most powerful test rejects the null hypothesis if the LR is larger than
some threshold. Therefore, in eq. (1) the LR is bounded by exp(ϵ) so that the null
hypothesis of no unit change is never rejected.

This view is a finite population version of the popular interpretation of DP that
assumes an infinite population from which D is sampled. For example, Wasserman
and Zhou (2010) regard D as i.i.d. samples. In the context of DP, hypothesis testing
under an infinite population is well studied by Liu et al. (2019); see also references
therein. Often D is assumed to have a distribution f(·; θ), where θ is a parameter
(vector) and D is a sample space. Bayesians need a prior for θ, and thus D can not
be a parameter space for them.

In the Bayesian context, the LR is the Bayes factor. It is used by Jeffreys
(1935, 1961) for the purpose of hypothesis testing to evaluate the evidence of
a scientific theory. This Bayes factor view produces other variants of DP. For
example, Kifer and Machanavajjhala (2014) regard a prior for θ as an attacker’s
background knowledge. This is another way to protect D at hand in D; they justify
the assumption of an informative prior due to the no free lunch theorem (Kifer and
Machanavajjhala, 2011) that one can not ensure privacy and utility simultaneously
without making assumptions about an attacker’s background knowledge. Also in
Kifer and Machanavajjhala (2014), D+∆ and D are mutually exclusive 2 secrets,
and ∆ is not a unit change or adjacency anymore.

A different interpretation of DP arises by rewriting eq. (1) as

logP(A(D +∆) ∈ S)− log P(A(D) ∈ S)

|∆| ≤ ϵ, (3)

where |∆| = 1. The left hand side of eq. (3) corresponds to the gradient of the log
likelihood function, where D is a parameter (vector). For a continuous parameter
space D, we can take the limit of |∆| → 0. Then under regularity conditions, eq.
(3) bounds the (partial) derivative of log P(A(D) ∈ S) in the limit. This idea leads
to the notion of derivative privacy (Hoshino, 2018). Derivative privacy naturally
limits the Fisher information of D; the next section demonstrates the discrete
version of this argument.

Smith (2008) considers the maximum likelihood estimator of θ under DP. His
asymptotic argument also depends on the Fisher information.

3.3 Bounding the Accuracy of Population Frequency Estimation

The gradient of a likelihood function decides the accuracy of parameter estimation.
Hence when it is bounded by DP, the variance of the estimator of a parameter is
inevitably bounded. This section explicates such a bound of the unbiased estimator
of a population frequency.
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We use notation introduced in Section 2.5 of a finite population. That view is
advantageous to discern identification since the resolution of D decides the possi-
bility of the identification of an entity. Accordingly, ∆ has to be the move of an
entity in a population as in Dwork et al. (2006b).

First we state the DP condition (1) in our case. A random vector m is ϵ-DP,
if and only if for all m ∈ M, for all n ∈ N and for all n+∆ ∈ N ,

P(m;n+∆)

P(m;n)
≤ exp(ϵ). (4)

Second, we express the Hammersley-Chapman-Robbins inequality as Theorem
1 below; see Lehmann and Casella (1998, p.113). There M is assumed to be com-
mon between the cases of n and n+∆ as Definition 3 of ϵ-DP requires.

Theorem 1 (Hammersley, 1950, Chapman and Robbins, 1951) Suppose that m

is distributed subject to P(m;n), and P(m;n) > 0 for all m ∈ M. Let g(n) be an

estimand. If n and n + ∆ are two values for which g(n) ̸= g(n + ∆), then for any

unbiased estimator γ of g(n),

V(γ) ≥ [g(n+∆)− g(n)]2/E[
P(m;n+∆)

P(m;n)
− 1]2.

We note that the DP condition (4) immediately implies for all n that

E[
P(m;n+∆)

P(m;n)
− 1]2 ≤ (exp(ϵ)− 1)2.

Third, we set g(n) = nj and write γ = n̂j . When ∆ induces the increment
of nj , [g(n + ∆) − g(n)] = 1. Then as a special case of Theorem 1, we have the
following Theorem 2. Table 2 provides the lower bound of eq. (5) for some ϵ.

Theorem 2 Suppose that m is ϵ-DP in the sense of eq. (4). Then for any unbiased

estimator n̂j of nj ,

V(n̂j) ≥
1

(exp(ϵ)− 1)2
. (5)

It is noteworthy that P(m;n) > 0 for all m ∈ M when DP holds. Considering
its contrapositive, if P(m;n) = 0 for some m then DP does not hold. This fact
dismisses an important family of random masking from DP. If P(m;n) = 0 for
mj > nj , j = 1, 2, . . . , J, then this random masking is called sampling without re-
placement. Hence we note Remark 1 below. In particular, simple random sampling
without replacement is not ϵ-DP, as Shlomo and Skinner (2012) point out. They
tacitly exclude sampling with replacement and claim that “a sampling scheme in
which a population unique is sampled with a positive probability is not (ϵ-)DP,”
but this claim is inappropriate since it presumes that N = {n}.

Remark 1 No sampling without replacement is ϵ-DP.

We have seen that ϵ controls the lower bound of the variance of the estimator of
a parameter. Therefore, ϵ should be set to an acceptable level of the accuracy of the
estimation of a parameter. This direct logic seems new and simplifies complication
described in the next section.
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Table 2 Lower bound of V(n̂j)

ϵ .01 .1 .5 1 2 3
1/(exp(ϵ)− 1)2 9900.4 90.4 2.38 .339 .024 .003

3.4 Complication of a Privacy Budget

Liu et al. (2019) state that “a key challenge is how to set an appropriate value”
of ϵ for DP in practice. Also Reiter (2019) puts “finding understandable concep-
tualizations of privacy budgets and accuracy loss in practice remains an open
challenge.”

Some values of ϵ are actually used without firm reasoning. Examples are pro-
vided below. According to Reiter (2019), OnTheMap of the U.S. census bureau
uses ϵ ≈ 9. RAPPOR of Google uses ϵ = log(3); see Erlingsson et al. (2014). Tang
et al. (2017) claim that Apple uses ϵ = 1 or ϵ = 2. Dwork et al. (2017) state that
ϵ “should be thought of as a small constant no larger than 1.”

There exist a few studies on the concrete selection of ϵ. Lee and Clifton (2011)
assume a prior distribution over D. Then the posterior distribution of D after
observing published data is computed, and the maximum posterior probability
with respect to D is bounded as a function of ϵ, being specific to the Laplace noise.
The bound of the posterior probability is controlled by a threshold, where ϵ can
be expressed as the function of this threshold. This method results in the casewise
decision of ϵ. Essentially they interpret the absolute value of a posterior probability
as a usual probability, which is hard to justify. Likelihood is the relative evidence
of parameters; see Pawitan (2001, Chap. 2) for example. Liu et al. (2019) also
assume a prior distribution over D. Then they consider an attacker’s capability to
statistically test mutually exclusive secrets. There, precision denotes out of those
predicted positive how many of them are actually positive, and recall denotes the
fraction of the true positives that are labeled as positive. They quantify hypothesis
testing based on the LR by Precision Recall (PR)-relation. Since DP bounds the
LR by exp(ϵ), this PR-relation can be a function of ϵ. Because PR-relation is more
interpretable than ϵ itself, the selection should be easier. However, the selection of
ϵ must be tailored to each application still.

The Bayes factor itself is the final evidence of hypothesis testing. Hence its
grading by the originator (Jeffreys, 1961, Appendix B) is widely accepted. Table
3 reproduces its simplified version by Kass and Raftery (1995). In forensics, Evett
et al. (2000) also grade the Bayes factor as the evidence of a hypothesis. Table 4
summarizes theirs for comparison.

Simply regarding D as a parameter space without a prior distribution over
it, a frequentist should employ the standard LR test based on the asymptotic
distribution derived by Wilks (1938). When ∆ is one dimensional (i.e., not a move),
2 log(P(A(D +∆) ∈ S)/P(A(D) ∈ S)) approximately has the χ2 distribution with
one degree of freedom. By the symmetric definition of DP, we can consider that
∆ is significantly revealed for a large value of the LR. Equating 2ϵ to the (1− α)
quantile of the χ2 distribution, we have the critical value of ϵ that conceals ∆. In
the one dimensional case, when α=10%, ϵ = 1.353; when α=5%, ϵ = 1.921; when
α=1%, ϵ = 3.317. These values seem very consistent with Table 3.
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Table 3 Interpretation of the Bayes factor (Kass and Raftery, 1995)

log10 exp(ϵ) exp(ϵ) ϵ Evidence against null
0 to 1/2 1 to 3.2 0 to 1.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 1.2 to 2.3 Substantial
1 to 2 10 to 100 2.3 to 4.6 Strong
> 2 > 100 > 4.6 Decisive

Table 4 Interpretation of the Bayes factor (Evett et al., 2000)

exp(ϵ) ϵ Evidence against null
1 to 10 0 to 2.3 Limited evidence to support
10 to 100 2.3 to 4.6 Moderate evidence to support
100 to 1000 4.6 to 6.9 Moderately strong evidence to support
1000 to 10000 6.9 to 9.2 Strong evidence to support
> 10000 > 9.2 Very strong evidence to support

The decision of ϵ based on the χ2 distribution has a solid basis and needs no
casewise adjustment. However, it depends on a large sample theory where many
i.i.d. samples of random masking are to be published, which is usually not the
case. Also it is unclear whether the detection of ∆ results in disclosure.

3.5 Privacy Budget as a Function of the Deniability of Disclosure

In this section we derive our method to select ϵ, based on Theorem 2. Ours needs
no tailoring of ϵ to each application without asymptotics. Also its implication to
disclosure is explicit.

We have seen in Section 2.5 that if n̂j is uncertain for all j, then both identity
disclosure and attribute disclosure are uncertain. We measure this uncertainty by
the probability of the incorrect estimation of a population frequency.

An estimate of n̂j can be a real number, but we know that true nj is a non-
negative integer. Hence an attacker should guess that nj is the nearest integer of
n̂j . If |n̂j − nj | ≥ 1/2 then the nearest integer of n̂j is not the truth, and thus
P(|n̂j − nj | ≥ 1/2) is the probability of the incorrect estimation of nj .

Consequently, as the upper bound of this probability decreases, it is more likely
that an attacker’s estimation is correct. This upper bound is given by Chebyshev’s
inequality as P(|n̂j − nj | ≥ 1/2) ≤ 4V(n̂j), where n̂j is an unbiased estimator of
nj . If n̂j has the least variance given by eq. (5),

P(|n̂j − nj | ≥ 1/2) ≤ 4

(exp(ϵ)− 1)2
=: αϵ. (6)

When αϵ ≤ 1, the inequality of (6) is sharp because of the following case:

n̂j =

nj + 1/2 with probability αϵ/2,
nj with probability 1− αϵ,

nj − 1/2 with probability αϵ/2.

Therefore, we can claim that even an attacker who makes an error of at most
one half wrongly guesses a population frequency with a probability as much as αϵ.
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A different estimator, which may be biased, can decrease the probability of the
incorrect estimation of nj , but αϵ quantifies the deniability of disclosure. For an
attacker to claim disclosure, the error probability has to be significantly small. In
this sense, αϵ is a nominal significance level.

The selection of αϵ is more intuitive than that of ϵ. Hence we rewrite eq. (6)
as ϵ = log(1 + 2/

√
αϵ). For example, when αϵ = 10%, ϵ = 1.991. When αϵ = 5%,

ϵ = 2.297. When αϵ = 1%, ϵ = 3.045. These values are comparable to those we
have seen in the previous section.

4 Conclusion

Identity protection has been a working device to support the practice of official
statistics. It allows the statistical estimation of unknown facts, while a statistical
agency can claim that confidentiality is ensured. However, identity protection is
more difficult than ever, as we have seen in Section 2.3. Stronger protection such
as synthesis is more appreciated.

In this context, fully synthetic data require us to reconsider the meaning of
identity protection; we can not accept a logic that fully synthetic data are always
publishable because of no presence of real entities. No data should be published
when they breach confidentiality.

The present article regards the breach of confidentiality as (identity) disclosure
defined in Section 2.5. Identity protection is originally a tool for confidentiality,
and a tool itself should not be a goal to pursue. The presence of an entity in data
is relevant to identity protection, but it is not necessarily relevant to the breach
of confidentiality.

Disclosure has been mathematically defined to be a deterministic situation,
which serves legal or institutional requirements. In addition, its uncertainty can
be clarified to measure. We now understand that although deterministic masking
can prevent disclosure by changing the sample space, universal protection ought
to be provided by random masking.

DP is very popular in the assessment of random masking, but not many people
seem to understand that DP is just a sufficient condition to bound the accuracy of
the estimation of true values of data as shown in Section 3.3. This fact simplifies
the decision of a privacy budget, as we have seen in Section 3.5

The remaining issue is the concrete mechanism of random masking that satis-
fies DP without distorting data too much. Bowen and Liu (2020) compare various
ϵ-DP methods by means of simulation studies. Many existing methods are algorith-
mically defined, and they often employ numerical optimization. Hence the general
property of them is difficult to elucidate. Also most of them can not fix a sample
size m, which should be consistent with a census table.

Machanavajjhala et al. (2008) propose an exceptional ϵ-DP mechanism: A
Dirichlet-multinomial mixture. Its detailed property is widely known, while m is
fixed. We note that it has the same support of the multinomial distribution. Such
a mechanism can be regarded as (nonsimple) random sampling with replacement,
since the multinomial distribution is equivalent to simple random sampling with
replacement. Random sampling with replacement can thus be ϵ-DP. This view
suggests a direction to improve the Dirichlet-multinomial mixture, which distorts
data very much.
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We remember that Fienberg (1994) proposes to generate synthetic data by
bootstrapping from smoothed raw data; see Section 2.4. Bootstrapping is equiva-
lent to the multinomial distribution as seen in Example 4. Therefore, generating
data by nonsimple random sampling with replacement from slightly smoothed raw
data can be ϵ-DP; we have to allocate a positive probability to sample points of
zero population frequency, though. This type of data much contain characteristics
derived from real entities. Simultaneously, DP assures that identity disclosure and
attribute disclosure are explicitly deniable. This is the goal of official statistics to
protect confidentiality.

The current practice of publishing microdata depends much on subsampling or
random sampling without replacement, although this process is not ϵ-DP; see Re-
mark 1. Subsampling, however, is in a broad sense sampling from raw data. Hence
random sampling with replacement, which can have DP, should be considered as
a method of subsampling.

Many people seem to believe that ϵ-DP microdata must be sampled from a sta-
tistical model since microdata including real entities represent “a violation of the
core principles of DP” (Bambauer et al., 2013). However, complicated modeling of
a synthetic population is not necessary for DP. Just subsampling, nonsimple ran-
dom sampling with replacement, from smoothed raw data generates differentially
private microdata of real entities.

Against subsampling, Dwork (2011) claims “Suppose appearing in a subsample
has terrible consequences. Then every time subsampling occurs some individual
suffers horribly.” However, owing to DP, we can deny terrible consequences or
disclosures irrespective of presence in a subsample. It is time to discard the notion
of presence.
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