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Abstract

To model diverse populations, the present article proposes a family of distributions that
are closed under recoding and suppression. This family is supported by an empirical fact
known as Zipf’s law and suggests an upper bound of disclosure risk. The quasi-multinomial
distribution is an instance from this family and studied in particular for the assessment of
disclosure risk. Also reported is an example in which the quasi-multinomial distribution fits
better than existing models.
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1 Introduction

The precondition of disseminating microdata is to assess correctly the risk of disclosing surveyees’
privacy. However, disclosure risk is difficult to evaluate when a sampling fraction is not large.
The reason of this difficulty is the lack of information about a population. Superpopulation
models thus compensate auxiliary knowledge about a population. The most crucial point here
is the proximity of a model to the reality.

Because of the broad variety of real populations, a single model would be unable to approx-
imate every case. Hence we should employ a set of models, among which the best fitted model
is to provide plausible assessment given data. We therefore need construct a wide set of models,
but little argument seems to exist about the method of construction.

The present article constructs a family of superpopulation models that are closed under
anonymization techniques. In other words, an anonymized model belongs again to the same
family. This reproductive property is desirable since the degree of anonymization is determined
after trial-and-errors. Throughout the process, we should use the same ruler.

To introduce this family, let us begin with considering the general structure of our field’s
common practice. Suppose that microdata are published after anonymization. A microdata
set consists of records with information of fields, and anonymization techniques are applied to
selected records and fields. A basic technique of anonymization is recoding, which coarsens the
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information of a field by reducing the number of categories of the field. Another basic technique
is suppression, by which a field is concealed.

First we consider applying the same combination of these two techniques globally to all
records, obedient to prevailing practice. Global suppression is not customary wording, but this
term here indicates that a field is unpublished. Local anonymization techniques, by which a part
of records is modified, will be discussed together with perturbative ones in Section 6. Readers
unfamiliar with anonymization concepts should consult with Willenborg and de Waal (1996,
2001).

Under the combination of global recoding and suppression, the risk assessment of microdata
reduces to that of a contingency table. The global property in this case implies that all individu-
als (records) are classified by the same categorization of fields. Hence a single contingency table
losslessly summarizes the information of records. The present article thus considers modeling of
a contingency table.

Global suppression is nothing but the collapse of cells of a contingency table. That is, global
suppression reduces the dimension of a table by merging cells that have the same values of
variables except for the suppressed variables. Recoding is similarly equivalent to the collapse of
cells. Therefore our model should be treatable on collapsing or merging cells.

Let N0 and N be the set of nonnegative integers and the set of positive integers respectively.
For n ∈ N, [n] := {1, 2, . . . , n}. We use the following notation for a contingency table. The
number of key variables (for the identification of an individual) determines the dimension of a
table, and the product of the number of categories of key variables is the total number of cells,
which is denoted by J . We append a one dimensional index j, j ∈ [J ], to each cell. A natural
index of a cell may be multidimensional, but the location of a cell in a multidimensional space
can be a function of j. This information consists in the covariates of a cell. The frequency of
the j-th cell is denoted by Fj , and

F J := (F1, F2, . . . , FJ), J ∈ N.

The total number of individuals is

N :=
J∑

j=1

Fj .

A typical risk measure of a file is the number of unique cells, each of which contains only one
individual. More generally the number of small cells is important risk information, as Greenberg
and Zayatz (1992) pointed out. We define frequencies of frequencies (Good (1953)) or size indices
(Sibuya (1993)) as

Si :=
J∑

j=1

I(Fj = i), (1)

where I(·) is an indicator. The number of unique cells is then expressed by S1. For a vector, we
write

Sn := (S1, S2, . . . , Sn), n ∈ N.

To discuss risk measures precisely, we have to discriminate between a population and samples.
For example, unique cells in a population are called population uniques, different from sample
uniques. A sample unique that is also a population unique is called a special unique; see Dale
and Elliot (2001) for example. Several authors use the proportion of the number of special
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uniques to the number of sample uniques as a risk measure. The point estimate of the number
of special uniques can be a sampling fraction times the number of population uniques. Similarly
the weighted sum of population size indices has been proposed as a risk measure. For example,
Bethlehem et al. (1990) use the inverse of

N∑
i=1

(
i

N

)2

Si,

and Greenberg and Zayatz (1992) propose the use of

−
N∑

i=1

log
(

i

N

)
i

N
Si.

Therefore, except for a census, the estimation of population size indices is important.
The unique unbiased estimator of a size index was given by Engen (1978, Theorem 2.1) under

simple random sampling without replacement for a fixed population. However, this estimator is
useless because of its vast variance; see Shlosser (1981) for one explanation. Hence we assume a
distribution of size indices or a superpopulation to supply auxiliary information.

Concerning the risk measure of a record, we need evaluate a function of Fj , where j is the
index of a cell to which an evaluated record belongs. A population’s Fj is also difficult to
estimate when a sampling fraction is low. Therefore we still need a superpopulation.

The present paper regards both a population and samples as realizations of the same super-
population. Namely a population consists of new draws from a fixed superpopulation. Then
we assess the risk by an empirical Bayes method: the parameters of a superpopulation are
estimated, based on which we take the expectation of a risk measure.

For example, Franconi and Polettini (2004) measured the risk of a record by the posterior
mean of 1/Fj given the sample frequency of the jth cell. However, instead of this Bayesian
approach, our assessment progresses in the following way. First we estimate the parameter θ of
a model based on samples, which is denoted by θ̂. Let the corresponding population size be n∗.
Then we evaluate the risk as

E(1/Fj |Fj ≥ 1, N = n∗; θ̂), (2)

given that the j-th cell is a sample unique. Since a population frequency is never less than
a sample frequency, (2) is conditioned on Fj ≥ 1. As regards population uniques, simply we
evaluate E(S1|N = n∗; θ̂).

It is noteworthy that Fj and Si are not necessarily of a population. They express random
variables, and

fJ := (f1, f2, . . . , fJ), sn := (s1, s2, . . . , sn)

denote just realized values.
In the next section, we construct a family of the distributions of F J that are closed under

global recoding and suppression. This family unifies the existing context of superpopulation
models commenced by Bethlehem et al. (1990). Moreover a new method of risk assessment
results from an instance of this family: the Quasi-Multinomial (QM) distribution proposed by
Consul and Mittal (1975, 1977). We formally introduce the QM distribution in Section 3. A
special treatable case of the QM distribution is considered in Section 4. Risk assessment by the
QM distribution is demonstrated in Section 5. We clarify the scope of the proposed family for
general anonymization practices in Section 6. All the proofs of Theorems are given in Appendix.
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2 A family of distributions consistent with anonymization

In this section, we propose a family of distributions for modeling a contingency table. This
family contains the multinomial distribution and the Dirichlet-multinomial mixture, which is
often used in statistical disclosure control as well; see Takemura (1999), Omori (1999) or Forster
and Webb (2007) for various uses. The QM distribution is a member of this family and thus
potentially useful in diverse contexts.

The most basic way to model the frequencies of a contingency table would be to suppose
that each Fj is independently Poisson distributed with mean θj . Then without restriction, the
number of the parameters is J , which tends to be very large in our field. Hence we would
like to introduce some restriction. For example, a log-linear model determines the number of
parameters so that the variance of Fj equals θj , which is explained by covariates. However,
covariates may be so uninformative that the variation of θj is not sufficiently described and Fj

overdisperses. This is common because we have to deal with a sparse contingency table. Another
special reason of our field is that covariates may be perturbed, which decreases the information.
Hence the most basic modeling should be modified to manage overdispersion.

One method is to change the distribution of Fj . For example, the negative binomial distri-
bution is widely used for this purpose. Nevertheless other distributions should be usable, and
we are interested in the family of usable distributions. To find this family, we consider the most
overdispersed case: all Fj are independent and identically distributed. If a distribution can fit
this case, it should also fit a less overdispersed case where the means of cells are not identical.

The most overdispersed model depends on no covariate. It is thus better to supply informa-
tion other than covariates. The present article employs the following empirical fact. In numerous
fields such as linguistics or statistical ecology, size indices are often log-convex:

Si+1

Si
≥ Si

Si−1
, i ∈ N.

See Figure 1 in Section 5 for one example in our field. We can regard this tendency as a version
of Zipf’s law; see Zipf (1949) or Mandelbrot (1983). Therefore a model should be consistent
with the log-convexity. In Proposition 1, cited from Hoshino (2004), the log-convexity naturally
restricts the distribution of Fj .

Proposition 1 Let Fj , j ∈ [J ], be independent and identically distributed. Suppose that P(Fj =
0) 6= 0 and P(Fj = 1) 6= 0. If the expectations of size indices are log-convex or

E(Si+1)
E(Si)

≥ E(Si)
E(Si−1)

, i ∈ N, (3)

then Fj is compound Poisson distributed.

Therefore, the distribution of Fj should be compound Poisson, which is defined by the
following probability generating function (pgf):

Gj(z) := exp(θj(g(z) − 1)), 0 ≤ θj < ∞, (4)

where

g(z) =
∞∑
i=1

qiz
i (5)
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is another pgf of a distribution over positive integers: qi is the probability of i, i ∈ N. We assume
that these pgfs are convergent for z in a neighborhood of zero and the distribution {qi} is proper.
The parameter θj is proportional to E(Fj) and allowed to vary among cells.

The quintessence of (4) is the negative binomial distribution, where g(z) is of the logarithmic
series distribution. The negative binomial equals the Poisson distribution mixed with the gamma
distribution, but the mixed Poisson is a different concept from the compound Poisson. See
Steutel and van Harn (2004, p.368) for a relationship between these concepts. A compound
Poisson distribution is also called a Poisson-stopped-sum distribution; see Johnson et al. (1993,
p.351). Sometimes (4) is designated the generalized Poisson distribution because it reduces to
the Poisson distribution when g(z) = z. A compound Poisson distribution overdisperses, as
stated in Johnson et al. (1993, p.354).

Consequently, the joint distribution of F J should be the product of independent compound
Poisson distributions. Moreover, conditioning on N is more natural than dealing with random
N , since the total frequency of a population is usually known in risk assessment. Therefore we
consider the joint conditional distribution:

P(F J = fJ |N = n). (6)

Another defense of this conditioning is the accuracy of risk inference, which will be formally
stated by Theorem 2. Now we define our family of interest.

Definition 1 Suppose that Fj , j ∈ [J ], is independently compound Poisson distributed as (4),
where

∑J
j=1 θj > 0. We then call the conditional distribution (6) a Conditional Compound

Poisson (CCP) distribution generated by the distribution of g(z). The parameter

πj :=
θj∑J

j=1 θj

, j ∈ [J ], (7)

is called a cell probability.

Apparently cell probabilities satisfy

J∑
j=1

πj = 1, 0 ≤ πj ≤ 1, j ∈ [J ]. (8)

The name of cell probability is validated by the following fact.

Theorem 1 Let (6) be CCP distributed with cell probabilities (π1, π2, . . . , πJ). Then

E(Fj |N = n) = nπj , j ∈ [J ].

The most overdispersed case corresponds to the following special case, which is studied by
Hoshino (2004, 2005a).

Definition 2 A CCP distribution (6) is called symmetric if all cell probabilities equal 1/J .
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For example, the CCP distribution generated by g(z) = z amounts to the multinomial dis-
tribution. Therefore the family of CCP distributions generalizes the multinomial distribution,
while it inherits good properties. Another example is the Dirichlet-multinomial distribution,
which is a CCP distribution generated by the logarithmic series distribution. The symmetric
Dirichlet-multinomial distribution is used by Takemura (1999) for risk assessment. The CIGP
distribution (Hoshino (2003)) is a symmetric CCP distribution generated by an extended (trun-
cated) negative binomial distribution.

On the selection of g(z), Theorem 2 below is helpful. A Modified Power Series (MPS)
distribution (Gupta (1974)) over positive integers is defined by the following pgf:

g(z) =
∞∑
i=1

aiξ
i

η(ξ)
zi, (9)

where

η(ξ) =
∞∑
i=1

aiξ
i, 0 ≤ ai, 0 < ξ.

It should be mentioned that ξ may be some function.

Theorem 2 Let Fj , j ∈ [J ], be independently compound Poisson distributed as (4), where g(z)
is MPS distributed as (9). Then N is sufficient for ξ. In other words, a CCP distribution
generated by an MPS distribution (9) does not depend on ξ.

Theorem 2 implies that risk inference based on a CCP distribution is not less exact than
that of the unconditional distribution of F J when Fj is compound Poisson distributed with g(z)
of an MPS distribution. Assuming that a risk measure depends on ξ, the error of the estimation
of ξ causes inexact risk assessment. Hence it is better that a risk measure does not depend on
ξ, which is the case of Theorem 2. This view is formally justified by Rao-Blackwell theorem; see
e.g. Lehmann (1991, p.50).

For example, the Poisson-gamma model (Bethlehem et al. (1990)) assumes that Fj is in-
dependent and identically compound Poisson distributed with g(z) of the logarithmic series
distribution, which is an MPS distribution with ai = 1/i. Bethlehem et al. (1990) let E(N)
equal the observed number of samples; this is equivalent to using a moment estimator, and the
uncertainty on ξ affects the risk inference. On the contrary, conditioning on N , the Dirichlet-
multinomial distribution eliminates the uncertainty on ξ because of Theorem 2.

Next we see that a CCP distribution is closed under recoding or suppression. To understand
this fact, we exploit the reproductivity of a compound Poisson distribution. First we consider
unconditionally: Fj , j ∈ [J ], is independently distributed as (4). Then the pgf of a merged
frequency F1 + . . . + Fm is

exp(
m∑

i=1

θj(g(z) − 1)),

which is again a compound Poisson distribution. More generally, any merged frequency is
compound Poisson distributed. In the same course, the pgf of N becomes

exp(
J∑

i=1

θj(g(z) − 1)).
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This distribution does not change when cells are merged. As a result, once a CCP distribution
is assumed for a contingency table, an anonymized table is also CCP distributed since it is the
conditional distribution of independent compound Poisson variables. Similarly, any marginal
distribution of a CCP distribution is also a CCP distribution.

Theorem 3 Let (6) be CCP distributed with cell probabilities (π1, π2, . . . , πJ). Suppose that
m ∈ [J − 1]. Then for any m cells indexed by (j1, j2, . . . , jm), the marginal distribution of
(Fj1 , Fj2 , . . . , Fjm , n −

∑m
l=1 Fjl

) is CCP with cell probabilities (πj1 , πj2 , . . . , πjm , 1 −
∑m

l=1 πjl
).

Theorem 3 entails easy evaluation of the risk of a file or a record. From the definition of a
size index (1), we have

E(Si|N = n) =
J∑

j=1

P(Fj = i|N = n).

The right hand side depends on the marginal distribution of Fj , which is bivariate CCP dis-
tributed with cell probabilities (πj , 1− πj) if a CCP distribution is assumed for an entire table.
Hence conditioning on N is not very troublesome.

So far, the family of CCP distributions is suitable for modeling a contingency table because
(a) it is usable even if covariates are not informative, and (b) it is closed under anonymiza-
tion techniques. A CCP distribution is more validated when we consider the upper bound of
disclosure risk.

The most unsafe case in disseminating microdata is that the most detailed information of
individuals is available. This case does not necessarily imply original data without anonymiza-
tion. For example, an attacker may know more than a statistical agency. If outer databases
are matched, an attacker discerns variables that are originally unobserved. This situation is
tantamount to the recovery of suppressed variables or the increment of cells of a contingency
table. Therefore we would like to know the worst risk for an agency, where J equals infinity.

To investigate this extreme, we consider the sequence of deanonymization: a cell with the
highest cell probability is divided since it is regarded as the most coarse part. Repeating this
division can be expressed for a CCP distribution by

J∑
j=1

θj → µ (0 < µ < ∞), max
j

θj → 0 as J → ∞. (10)

The first condition of µ in (10) is required to define a cell probability. The limiting distribution
of not F J but Sn is given below because almost every Fj is zero in the limit, where the joint
distribution of F J does not make sense.

Theorem 4 Suppose that (6) is CCP distributed, under which the probability mass function of
Sn is denoted by pJ(sn), where

sn ∈ {sn : si ∈ N0, i ∈ [n],
n∑

i=1

isi = n,

n∑
i=1

si ≤ J} =: Sn(J).

Let us define

Sn := {sn : si ∈ N0, i ∈ [n],
n∑

i=1

isi = n}.
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If we apply (10),

lim
J→∞

pJ(sn) =
n!µu

∏n
i=1 qi

si 1
si!

Bn(µx1, . . . , µxn)
, sn ∈ Sn, (11)

where xi = i! qi, u =
∑n

i=1 si, and Bn(µx1, . . . , µxn) is a Bell polynomial defined by

Bn(x1, . . . , xn) := n!
∑

sn∈Sn

n∏
i=1

(xi

i!

)si 1
si!

. (12)

The pmf of size indices pJ(sn) is obtained by the change of variables (1). In the special case
of a symmetric CCP distribution, it becomes

pJ(sn) =
(

J

s0 s1 · · · sn

) n∏
i=0

P(F1 = i)si
1

P(N = n)
, (13)

where s0 = J −
∑n

i=1 si.
We call the right hand side of (11) the Limiting CCP (LCCP) distribution generated by

g(z). For example, the LCCP distribution generated by the logarithmic series distribution is
the Ewens (1972) distribution. Another LCCP distribution is the Limiting CIGP distribution
discussed by Hoshino (2006). The LCCP distribution is a special case of Gibbs partition (Pitman
(2006)). For more on a Bell polynomial, see e.g. Charalambides (2002, p.412)

Accordingly, the upper bound of disclosure risk can be evaluated by an LCCP distribution.
Since all the cells are homogeneous in the limit, it suffices to evaluate a file level risk measure,
which requires the expectation of a size index below.

Theorem 5 Suppose that Sn is LCCP distributed as the right hand side of (11). Then for all
r1, . . . , rn ∈ N0 such that q :=

∑n
i=1 iri ≤ n, the factorial moments are

E(
n∏

i=1

S
(ri)
i ) =

Bn−q(µx1, . . . , µxn−q)µrn(q)

Bn(µx1, . . . , µxn)

n∏
i=1

(
xi

i!
)ri , (14)

where r =
∑n

i=1 ri and n(q) = n(n − 1) · · · (n − q + 1).

3 The quasi-multinomial distribution

This section introduces the QM distribution as a useful CCP distribution. Consul and Mittal
(1977) derived the QM distribution by conditioning independent random variables, which is the
same as our construction of a CCP distribution.

The Borel distribution (Borel (1942)) has the following pmf:

P(i) =
(λi)i−1

i!
exp(−λi), i ∈ N, 0 ≤ λ < 1. (15)

This distribution is an MPS distribution (9) with ξ = λ exp(−λ). The compound Poisson distri-
bution (4) with g(z) of the Borel distribution is called the Lagrangian Poisson (LP) distribution
(Consul and Jain (1973)). Its derivation is rather indirect as seen in Johnson et al. (1993, p.394).
See also Consul and Famoye (2006) for the literature of the LP distribution and its relatives.
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The LP distribution’s pmf is

P(x; θ, λ) =
θ(θ + xλ)x−1

x!
exp(−θ − xλ), x ∈ N0, (16)

where θ ≥ 0, 0 ≤ λ < 1. This distribution (16) is referred to by LP (θ, λ) in the following. The
parameter θ is proportional to the mean. When λ = 0, LP (θ, λ) degenerates into the Poisson
distribution with mean θ; λ controls the variance. Negative λ, which produces an improper
distribution, is not allowed in the present article.

Now we construct the CCP distribution generated by the Borel distribution. Let Fj , j ∈
[J ], be independently distributed as LP (θj , λ). Then the joint conditional distribution (6) is
expressed by (

n

f1f2 · · · fJ

)
1∑

θj(
∑

θj + nλ)n−1

J∏
j=1

θj(θj + fjλ)fj−1, (17)

where fj ∈ {0, 1, . . . , n},
∑

fj = n. Theorem 2 implies that the QM distribution is indepen-
dent of λ exp(−λ). This independence can be confirmed by reparameterizing as θj/λ =: τj for
example. If λ = 0, (17) is the multinomial distribution. This fact becomes clear when we
reparameterize it by a cell probability (7) and β := λ/

∑
θj as(

n

f1f2 · · · fJ

)
1

(1 + nβ)n−1

J∏
j=1

πj(πj + fjβ)fj−1, (18)

where cell probabilities satisfy (8) and β is nonnegative. We observe that the QM distribution
(18) is a generalized multinomial distribution with an index β of overdispersion.

When J = 2 the quasi-multinomial distribution (17) reduces to the quasi-binomial distri-
bution (type 2) proposed by Consul and Mittal (1975). This is the marginal distribution of Fj

when F J is quasi-multinomially distributed. Hence it is used to evaluate record level risk. In
particular, Franconi and Polettini type risk (2) is the expectation of 1/Fj under the truncated
quasi-binomial distribution (type 2). That is,

E(
1
Fj

|Fj ≥ 1, N = n) =
n∑

x=1

1
x

(
n

x

)
πj(1 − πj)(πj + xβ)x−1(1 − πj + (n − x)β)n−x−1

(1 + nβ)n−1 − (1 − πj)(1 − πj + nβ)n−1
. (19)

This expression (19) seems to require some computation. As in Rinott (2003, p.279), 1/E(Fj |Fj ≥
1, N = n) might approximate to it, though E(1/Fj) ≥ 1/E(Fj) by Jensen’s inequality.

E(Fj |Fj ≥ 1, N = n) =
E(Fj |N = n)
1 − P(Fj = 0)

=
nπj(1 + nβ)n−1

(1 + nβ)n−1 − (1 − πj)(1 − πj + nβ)n−1
, (20)

because of Theorem 1:
E(Fj |N = n) = nπj ,

which can be directly derived by Abel’s formula; see Charalambides (2002, p.207) for example.
Table 1 provides a numerical comparison between (19) and the approximation. Notable under-
evaluation is observed when data heavily overdisperse or a cell probability is small. Because
these cases are typical in practice, the approximation seems unpromising.
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π β E(1/F |F ≥ 1, N) 1/E(F |F ≥ 1, N)
0.9000 0.0001 0.001111 0.001111
0.8000 0.0001 0.001250 0.001250
0.7000 0.0001 0.001429 0.001429
0.6000 0.0001 0.001668 0.001667
0.5000 0.0001 0.002002 0.002000
0.4000 0.0001 0.002505 0.002500
0.3000 0.0001 0.003343 0.003333
0.2000 0.0001 0.005024 0.005000
0.1000 0.0001 0.010111 0.010000
0.9000 0.0010 0.001112 0.001111
0.8000 0.0010 0.001251 0.001250
0.7000 0.0010 0.001431 0.001429
0.6000 0.0010 0.001671 0.001667
0.5000 0.0010 0.002008 0.002000
0.4000 0.0010 0.002515 0.002500
0.3000 0.0010 0.003365 0.003333
0.2000 0.0010 0.005082 0.005000
0.1000 0.0010 0.010375 0.010000
0.9000 0.0100 0.001126 0.001111
0.8000 0.0100 0.001289 0.001250
0.7000 0.0100 0.001505 0.001429
0.6000 0.0100 0.001806 0.001667
0.5000 0.0100 0.002253 0.002000
0.4000 0.0100 0.002980 0.002500
0.3000 0.0100 0.004351 0.003333
0.2000 0.0100 0.007740 0.005000
0.1000 0.0100 0.024702 0.009999
0.9000 0.1000 0.002825 0.001111
0.8000 0.1000 0.005793 0.001250
0.7000 0.1000 0.010789 0.001428
0.6000 0.1000 0.019455 0.001665
0.5000 0.1000 0.034789 0.001993
0.4000 0.1000 0.061960 0.002472
0.3000 0.1000 0.109001 0.003214
0.2000 0.1000 0.186244 0.004448
0.1000 0.1000 0.302835 0.006654
0.9000 1.0000 0.023490 0.001066
0.8000 1.0000 0.046682 0.001138
0.7000 1.0000 0.070530 0.001216
0.6000 1.0000 0.094983 0.001300
0.5000 1.0000 0.119991 0.001393
0.4000 1.0000 0.145500 0.001494
0.3000 1.0000 0.171459 0.001604
0.2000 1.0000 0.197813 0.001724
0.1000 1.0000 0.224510 0.001855

Table 1: Franconi and Polettini type risk (N = 1000)
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The marginal variance of Fj is derived by Consul and Mittal (1977) for β > 0 as

V(Fj |N = n) = nπj

[{
(n − 1)!
1 + nβ

n∑
i=2

πj + iβ

(n − i)!

(
β

1 + nβ

)i−2
}

+ 1 − nπj

]
.

On the upper bound of the risk, the LCCP distribution generated by the Borel distribution
is given by Hoshino (2005b, Theorem 1). Its pmf for positive ρ is

P(sn) = n! ρu−1(ρ + n)1−n
n∏

i=1

(
ii−1

i!

)si 1
si!

, sn ∈ Sn, (21)

where µ = λρ in the limiting argument (10). We call (21) the Limiting Quasi-Multinomial
(LQM) distribution. See Hoshino (2005b) for the factorial moments of size indices and more
results on this distribution.

The parameter estimation of the asymmetric QM distribution is not discussed in this paper,
because it requires a long discussion. Cell probabilities are supposed to be set by regression,
and after that, β adjusts overdispersion. The detail of this adjustment is studied in the author’s
subsequent paper.

4 The symmetric quasi-multinomial distribution

A symmetric CCP distribution is of great concern because it accords with the maximum overdis-
persion. It is important to examine whether a symmetric CCP distribution can sufficiently de-
scribe data or not. Hence this section prepares a few results on the symmetric QM distribution
for application.

In the symmetric case of the QM distribution, we can evaluate the joint distribution of sizes
indices, using (13). To denote the dependence of Sn on J explicitly, we write Sn,J here. Let
α := Jβ. Then for 0 ≤ α

P(Sn,J = sn|N = n;α)

=
(J − 1)!n!

(J + nα)n−1

n∏
i=0

(
(1 + iα)i−1

i!

)si 1
si!

, sn ∈ Sn(J). (22)

We refer to (22) as the symmetric QM distribution.

Theorem 6 Suppose that size indices are distributed as (22). Then for ri ∈ N0, i ∈ [n], such
that J ≥

∑n
i=1 ri =: r, n ≥

∑n
i=1 iri =: q,

E(
n∏

i=1

Si
(ri)|N = n) =

n!(J − 1)!(J − r + (n − q)α)n−q−1

(J + nα)n−1(n − q)!(J − r − 1)!

n∏
i=1

(
(1 + iα)i−1

i!

)ri

.

In particular,

E(Si|N = n) = n(i)(J − 1)
(J − 1 + (n − i)α)n−i−1(1 + iα)i−1

(J + nα)n−1i!
.
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α E(S1) E(S2) E(S3) E(S4) E(S5)
0.1 888.03 52.19 2.40 0.10 0.00

1 758.14 94.35 13.90 2.25 0.39
10 288.72 92.00 42.57 23.15 13.78

∗100 36.34 13.40 7.38 4.82 3.45
500 7.35 2.71 1.50 0.98 0.71

1000 3.68 1.36 0.75 0.49 0.35
LQM(ρ = 100) 36.68 13.45 7.40 4.83 3.46

Table 2: N = 1000, J = 10000

α E(S1) E(S2) E(S3) E(S4) E(S5)
0.1 790.35 91.11 8.21 0.64 0.05

1 597.36 126.38 31.67 8.71 2.54
10 160.26 57.66 30.13 18.51 12.44

100 18.22 6.74 3.73 2.44 1.75
500 3.68 1.36 0.75 0.49 0.35

1000 1.84 0.68 0.37 0.25 0.18

Table 3: N = 1000, J = 5000

Hence risk measures are easily calculated under the symmetric QM distribution. Table 1,2,3
provide the values of E(Si|N = 1000), i ∈ [5], for J = 10000, 5000, 2500. We observe that the
expectations moderately depend on J .

In Table 2, the expectations under the LQM distribution (21) with ρ = 100 are given for
comparison. This case of ρ = 100 corresponds to the QM distribution with α = 100 because
J/α was taken to be ρ in deriving (21). The result suggests that the LQM distribution can
substitute for the symmetric QM distribution.

If so, the estimator of ρ is usable as an approximate estimator of J/α. Hoshino (2005b)
shows that the ML estimator of the LQM distribution is

ρ̂ =
Un − 1

1 − Un/n
,

which leads to an estimator of α:
α̃ =

J(n − Un)
n(Un − 1)

. (23)

This estimator should be valid when J is large. See Table 7 for an empirical examination.
Now we construct the ML estimation of the symmetric QM distribution. Denoting the

log-likelihood of (22) by `, its derivatives are given as

d`

dα
= −(n − 1)

n

J + nα
+

n∑
i=0

si(i − 1)
i

1 + iα
,

d2`

dα2
= (n − 1)

(
n

J + nα

)2

−
n∑

i=0

si(i − 1)
(

i

1 + iα

)2

.
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α E(S1) E(S2) E(S3) E(S4) E(S5)
0.1 630.06 139.85 24.26 3.64 0.50

1 403.60 130.01 49.61 20.79 9.24
10 83.04 31.38 17.23 11.12 7.85

100 9.11 3.37 1.87 1.22 0.88
500 1.84 0.68 0.37 0.25 0.18

1000 0.92 0.34 0.19 0.12 0.09

Table 4: N = 1000, J = 2500

Employing these equations, the Newton-Raphson method is applicable. Its starting value can
be given by the approximate estimator α̃.

Proposition 2 The Fisher information −E[d2`/dα2] is O(n) from Theorem 6.

5 An application

This section fits the symmetric QM distribution to a famous data set from µ-ARGUS software
(see e.g. Hundepool (2006)). Once the size of a population is given, we can evaluate disclo-
sure risk. The following argument, however, focuses on the fact that even the symmetric QM
distribution reasonably describes the test set, dominating other models in fit.

We use the demo data set of µ-ARGUS, which is actually the set free1 of the sdcMicro
package (Ver. 2.1.0) provided by Templ (2007). We select four key variables and globally recode
them, as summarized in Table 5; the column of “Variable” lists the name of key variables,
“Categories” lists the number of categories after recoding, and “Recoding” lists the break points
of the variable, if any. Then the number of cells J equals 3420, over which n = 4000 (sample)
individuals are distributed. The maximum frequency of a cell is 67, and there are 855 nonempty
cells.

Variable Categories Recoding
Region 10 breaks=(0,19,39,59,79,99,119,139,159,190)
Sex 2 –
Age 9 breaks=(1,9,19,29,39,49,59,69,100)
Ageyoung 19 –

Table 5: The detail of anonymization

To the anonymized data, 6 models are fitted: The QM model (QM), the Dirichlet-Multinomial
model (DM), the Poisson-Lognormal model (Po-Ln), the LQM model (LQM), the Pitman model
(Pitman) and the Ewens model (Ewens). QM is defined by (22), and LQM is (21). The def-
initions of other models are the same as those in Hoshino (2001). LCCP distributions were
proposed to assess the upper bound of disclosure risk, but this section uses instances (LQM and
Ewens) just for comparison.
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Table 6 shows the fits. The first column lists the names of models, and those fits are evaluated
by AIC and ŝ1, which is E(S1|N = 4000) under the ML estimates of parameters. It is better for
ŝ1 to be closer to the actual number of sample uniques: s1 = 335.

Table 6 also shows the fits for J = 10000, 2000 except for LQM, Pitman and Ewens, which
do not depend on J . The reason of varying J is to see the dependence of models on the number
of empty cells; s0 changes, but sn is fixed. One may claim that true J is smaller than 3420
due to structural zeros. On the other hand, when J → ∞, the limiting distribution of DM is
Ewens as that of QM is LQM. Hence the fits of QM and DM should resemble those of LQM
and Ewens when J = 10000. For each J , the ML estimate of α of QM is tabulated in Table
7. We in Section 4 let J/α be LQM’s parameter ρ, whose ML estimate ρ̂ is 1086.0. Since J/α̂
approaches ρ̂, we expect the approximate estimator α̃ of (23) is usable when J is large.

QM fits best, and LQM second in Table 6. It is unlikely that DM or Po-Ln wins against
QM for reasonable J in our example. The third is Pitman, and we compare the fits of QM and
Pitman in more detail. Table 8 gives the actual sample size indices from s1 to s9 along with
the fits of Pitman and QM. Figure 1 illustrates these data, where the vertical axis corresponds
to log(si + 1) and the horizontal axis corresponds to i − 1. The upper tail is truncated at the
maximum observed frequency: i = 67. The line indicates the actual data, “+” is of Pitman, and
“×” is of QM. QM defeats Pitman when i is smaller than around 15. Because smaller cells are
vital in risk assessment, this example well demonstrates the importance of the QM distribution.

C language programs used in this section are available together with the size indices data
from the author’s website:

http://stat.w3.kanazawa-u.ac.jp/owner/qmulti/qmulti.htm

J = 3420 J = 10000 J = 2000
Model AIC ŝ1 AIC ŝ1 AIC ŝ1

QM 226.30 346.10 229.24 376.66 239.58 304.05
DM 296.62 275.17 273.84 297.06 336.16 246.53
Po-Ln 881.26 481.82 2422.54 1367.12 489.67 362.73
LQM 234.41 389.13
Pitman 239.65 365.14
Ewens 265.42 307.53

Table 6: The fits of models

J α̂ J/α̂

2000 1.3454 1486.56
3420 2.6325 1299.15

10000 8.6729 1153.02

Table 7: The ML estimates of α
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s1 s2 s3 s4 s5 s6 s7 s8 s9

Actual 335.00 175.00 101.00 58.00 30.00 29.00 13.00 14.00 8.00
Pitman 365.14 135.93 76.94 51.00 36.78 27.94 22.00 17.78 14.66
QM 346.10 146.18 83.02 54.18 38.35 28.62 22.18 17.68 14.39

Table 8: The comparison of the expectations of models
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Figure 1: The comparison of the expectations of models

6 Concluding discussion

The negative binomial distribution is basic in modeling overdispersion. Hence, for instance,
Franconi and Polettini’s risk employs the negative binomial distribution. However, another
distribution may be more plausible depending on data; QM was better than DM in Section 5.
DM’s fit is basically the same as that of the negative binomial distribution, since DM is the
conditional distribution of independent negative binomial variables. Therefore considering the
family of CCP distributions leads to more precise evaluation of disclosure risk.

Before closing the present article, we think about the safety of local and perturbative
anonymization. The CCP distribution was introduced to be consistent with global recoding
and suppression, but it is useful for other anonymization in the following sense.

A record of microdata is a vector. Anonymization maps original records x’s to masked
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records y’s:  x1
...

xn

 7→

 y1
...

yn

 .

This mapping may or may not be random, but a superpopulation model regards yi as a random
sample. We thus denote the set of possible anonymized expressions by Y so that yi ∈ Y for
all i almost surely. For example, in Section 5, an expression implies the specific combination
of Region, Sex, Age and Ageyoung. The number of cells J was 3420, which is |Y|. Generally,
the definition of J is not the product of the number of categories but the cardinal of Y. The
present paper assumes Y is countable, which is appropriate. Even if some components of y are
continuous variables, they can be treated as discrete since an intruder can not discriminate a
subtle difference on the real line.

Many anonymization techniques have been proposed, but there seem to exist only two kinds
of safety: (a) Perturbative methods such as noise-addition or swapping regard safety as a distance
d() between the original and the anonymized. If d(xi, yi) increases, the anonymized set is
considered to be safer. (b) Recoding, suppression or microaggregation increases the number
of records that have the same expression. If

∑
j 6=i I(yi = yj) increases, the anonymized set is

considered to be safer. Actually, the second type technique has the first safety too.
An existing risk measure, however, may not count both kinds of safety. For example, Mateo-

Sanz et al. (2004) enumerate the number of anonymized records that are close to the original
using different distances such as standard deviation. This measure neglects the second kind of
safety. Another example is the number of population uniques, which does not reflect the first
kind. To account for overall safety, Reiter (2005) employs a more complicated approach that
evaluates the probability of identification. This method needs estimate the second safety in the
process, though.

The CCP distribution is useful for a risk measure that requires population frequencies. The
design of anonymization fixes Y, over which individuals are assumed to be CCP distributed.
Then the second safety or the population frequency of a given expression y can be estimated,
but the deanonymization of y to x is a different problem of the first safety.

In order to understand this fact, let us consider examples. Suppose that a microdata set has
two key variables of Sex and Age. Sex has two categories: F and M; Age has 100 categories
from 0 to 99. We can add noise to the original records so that Y = {F, M} × {0, . . . , 99}. For
the i-th observed expression yi, a risk measure may require its population frequency. A CCP
distribution can then contribute. As a separate issue, d(xi, yi) may be taken into account. If we
change the design of anonymization to swapping, Y can be the same. Then what differs is the
structure of d(xi, yi), which may or may not affect a risk measure. Consequently, the usefulness
of a CCP distribution depends on the selection of a risk measure.

The usefulness of a risk measure, however, depends on the design of anonymization. In
particular, local recoding or suppression needs special consideration. Take an example of the
two key variables. We first globally recode Age to 3 categories: {−14, 15 − 64, 65−}. Then we
locally recode an individual (M, 15 − 64) to (M, 15−). As a result, Y becomes

{(F,−14), (F, 15 − 64), (F, 65−), (M,−14), (M, 15 − 64), (M, 65−), (M, 15−)} =: Y1.

Suppose that a population consists of 7 individuals distributed over Y1 as in Table 9. Two cells
of (M, 15−64) and (M, 65−) are partially collapsed. We observe that a CCP distribution is still
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closed under the partial corruption of cells or local recoding (and suppression). Denoting the
frequency of y by Fy ,

S1 =
∑
y∈Y1

I(Fy = 1) = 3

is inappropriate as a risk measure, because the fact that Fy = 1 does not necessarily imply the
uniqueness of an individual. On the other hand, we locally suppress all individuals of (F, 65−)
and (M, 65−) to (x, 65−). Then Y reduces to

{(F,−14), (F, 15 − 64), (x, 65−), (M,−14), (M, 15 − 64)} =: Y2.

The seven individuals are now classified as in Table 10. In this case,

S1 =
∑
y∈Y2

I(Fy = 1) = 3

is appropriate as a risk measure. The essential difference between Y1 and Y2 is that the elements
of Y are mutually exclusive or not. For instance, (M, 15 − 64) is an element of Y1 and included
by another element (M, 15−), but the elements of Y2 are mutually exclusive.

If only global recoding and suppression are used, the elements of Y are mutually exclusive.
Hence frequency-based risk measures have been proposed for this situation. Actually, other
anonymization methods may produce Y whose elements are mutually exclusive. Then those risk
measures are still valid, and a CCP distribution makes sense. To summarize,

Remark 1 The CCP distribution benefits a frequency-based risk measure, which is inappropri-
ate when possible masked expressions are not mutually exclusive, though.

Considering the scope of the CCP distribution, we can understand miscellaneous anonymiza-
tion practices in a unified manner.

Sex \ Age -14 15-64 65-
F 1 2 0
M 2 0 1

1

Table 9: Partial local recoding

Sex \ Age -14 15-64 65-
F 1 2

M 2 1 1

Table 10: Total local suppression
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Appendix: Proofs

Proof of Theorem 1: First we show the case of J = 2 (N = F1 + F2):

E(F1|N = n) = n
θ1

θ1 + θ2
. (24)

To show (24), we use this relationship:

dG1(z)
dz

= θ1G1(z)
dg(z)
dz

=
∞∑

x=0

(x + 1)P(F1 = x + 1)zx. (25)

Using the second equation of (25),

θ1G1(z)G2(z)
dg(z)
dz

=
∞∑

x=0

(x + 1)P(F1 = x + 1)zx
∞∑

y=0

P(F2 = y)zy. (26)

The right hand side is rewritten as

∞∑
i=0

zi
i+1∑
j=0

jP(F1 = j)P(F2 = i + 1 − j) =
∞∑
i=0

ziE(F1|N = i + 1)P(N = i + 1). (27)

Then denote the pgf of N by G(z) = exp((θ1 + θ2)(g(z) − 1)) = G1(z)G2(z). Using the first
equation of (25),

θ1

θ1 + θ2

dG(z)
dz

= θ1G(z)
dg(z)
dz

,

which is the left hand side of (26). Expanding it further,

θ1

(θ1 + θ2)

∞∑
x=0

(x + 1)P(N = x + 1)zx

has to equal the last expression of (27). By comparing the coefficient of zn−1, (24) is shown.
Now we consider the case of J ≥ 3. Because of Theorem 3, the marginal distribution of

Fj , j ∈ [J ], is a bivariate CCP distribution with cell probabilities (πj , 1 − πj). Therefore the
proof of the bivariate case above suffices for the general case, since it does not depend on the
index of a cell. Q.E.D.
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Proof of Theorem 2: Because g(z) is expressed as η(zξ)/η(ξ), we can rewrite Gj(z) as

Gj(z) = exp
(

θj

η(ξ)
(η(zξ) − η(ξ))

)
=

ζj(zξ)
ζj(ξ)

,

where ζj(x) = exp(θj/η(ξ)η(x)). The second equation above implies that Fj is MPS distributed
over nonnegative integers. Therefore we can express the joint distribution of frequencies for
some bj,i as

P(F J = fJ) = ξn
J∏

j=1

bj,fj

ζj(ξ)
,

where n = f1 + · · · + fJ . Then by the factorization criterion of sufficient statistics (see e.g.
Lehmann (1991, p.39)), N is sufficient for ξ. Q.E.D.

Note on Theorem 2 The parameterization of an MPS distribution is not unique. However,
parameters are estimated under fixed parameterization. Thus independence from ξ ameliorates
risk inference, given specific parameterization.

Proof of Proposition 1: Because E(Si) = JP(Fj = i), (3) equals

P(Fj = i + 1)
P(Fj = i)

≥ P(Fj = i)
P(Fj = i − 1)

, i = 1, 2, . . . .

This is a sufficient condition shown by Warde and Katti (1971) for Fj to be a compound Poisson.
Q.E.D.

Proof of Theorem 4: This result generalizes Theorem 2.1 of Hoshino (2005a), which con-
cerns a symmetric CCP distribution.

Suppose that Fj , j ∈ [J ], are independently compound Poisson distributed as (4). Then we
denote a random vector of size indices by

T N,J := (T1, . . . , TN ) d= (
J∑

j=1

I(Fj = 1), . . . ,
J∑

j=1

I(Fj = N)).

The pmf of size indices under a CCP distribution can be expressed as

pJ(sn) =
P(T N,J = sn)∑

sn∈Sn(J) P(T N,J = sn)
, sn ∈ Sn(J).

We will show under (10) the limit of the numerator of the above equation:

lim
J→∞

P(T N,J = sn) = µu
n∏

i=1

qi
si

si!
exp(−µ

n∑
i=1

qi). (28)

If so, the limit of the denominator is

lim
J→∞

∑
sn∈Sn(J)

P(T N,J = sn) =
∑

sn∈Sn

µu
n∏

i=1

qi
si

si!
exp(−µ

n∑
i=1

qi)

=
exp(−µ

∑n
i=1 qi)

n!
Bn(µx1, . . . , µxn) (29)
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by the definition (12) of a Bell polynomial. Dividing the right hand side of (28) by (29), we have
(11). Therefore it suffices to show (28).

Let us denote the pgf of T N,J by

G(z1, . . . , zN ) =
J∏

j=1

(1 +
N∑

i=1

(zi − 1)P(Fj = i)).

Taylor’s theorem assures the existence of cj ’s satisfying

log G(z1, . . . , zN ) =
J∑

j=1

N∑
i=1

(zi − 1)P(Fj = i) − 1
2

J∑
j=1

(
∑N

i=1(zi − 1)P(Fj = i))2

(1 + cj)2
,

where 0 < cj <
∑N

i=1(zi − 1)P(Fj = i). We bound the last term:

J∑
j=1

(
∑N

i=1(zi − 1)P(Fj = i))2

(1 + cj)2
=

J∑
j=1

(θj
∑N

i=1(zi − 1)P(Fj = i)/θj)2

(1 + cj)2

≤ maxj θj

(1 + minj cj)2

J∑
j=1

θj(
N∑

i=1

(zi − 1)P(Fj = i)/θj)2. (30)

Hoshino (2005a, eq. B.2) proves that

lim
θj→0

P(Fj = i)
θj

= qi, i ∈ N.

Hence by applying (10), the right hand side of (30) goes to zero. Therefore, when we apply (10),

log G(z1, . . . , zN ) →
J∑

j=1

θj

{
N∑

i=1

(zi − 1)P(Fj = i)/θj

}
→ µ

N∑
i=1

(zi − 1)qi.

The last expression implies that Ti, i ∈ [N ], is independently Poisson distributed with mean µqi

in the limit. Thus we have shown (28). Q.E.D.

Proof of Theorem 5:

E(
n∏

i=1

Si
(ri)) =

n!µr

Bn(µx1, . . . , µxn)

∑
sn∈Sn

n∏
i=1

(µqi)
si−risi

(ri)

si!
(
xi

i!
)ri

=
n!µr

Bn(µx1, . . . , µxn)

n∏
i=1

(
xi

i!
)ri

∑
sn−q∈Sn−q

n−q∏
i=1

(µqi)
si−ri

(si − ri)!

=
n!µr

Bn(µx1, . . . , µxn)
Bn−q(µx1, . . . , µxn−q)

(n − q)!

n∏
i=1

(
xi

i!
)ri .

Q.E.D.
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Proof of Theorem 6:

E(
n∏

i=1

Si
(ri)|N = n) =

∑
sn∈Sn(J)

n!(J − 1)!
(J + nα)n−1

n∏
i=1

(
(1 + iα)i−1

i!

)si 1
(si − (ri − 1))!

=
n!(J − 1)!

(J + nα)n−1

(J − r)(J − r + (n − q)α)n−q−1

(n − q)!(J − r)!

n∏
i=1

(
(1 + iα)i−1

i!

)ri

×
∑

sn∈Sn(J)

(n − q)!(J − r − 1)!
(J − r + (n − q)α)n−q−1

×
n∏

i=1

(
(1 + iα)i−1

i!

)si−ri 1
(si − (ri − 1))!

.

The summation of the last expression amounts to one because for all sn−q ∈ Sn−q(J − r),
P(Sn−q,J−r = sn−q|N = n − q) is aggregated. Thus we have the result. Q.E.D.
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[2] Borel, E. (1942). Sur l’emploi du théorème de Bernoulli pour faciliter le calcul d’un infinité
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