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Abstract

Bethlehem et al. (1990) proposed a superpopulation model called Poisson-gamma model
to assess microdata disclosure risk. Takemura (1999) introduced the Ewens sampling formula
(Ewens (1972)) studied in statistical ecology to the disclosure problem as a limiting form of
a conditional Poisson-gamma model. Pitman (1995) considered an extension of the Ewens
sampling formula in a different context, and in this paper we assess usefulness of the Pitman
sampling formula in the disclosure field. After giving some theoretical properties of the Pit-
man model, we compare various superpopulation models based on the Akaike Information
Criterion (AIC) by applying them to real data sets from the Japanese labor force survey.
Our comparison strongly supports the Pitman model. This result suggests that our super-
population model based approach is very promising for the microdata disclosure problem as

well as for statistical ecology.
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1 Introduction

In releasing a microdata set, the statistical agency must eliminate records identifiable to a par-
ticular individual. A record is composed of fields that correspond to categorized attributes of
an individual. Attackers might identify an individual using information on records. In practi-
cal sense, we may consider individuals that are unique in the population with respect to the
categorization in sample data to be identifiable. The number of population uniques is thus an
important control object in the context of microdata disclosure, and it is important to estimate
the number of population uniques from sample data at hand. We may regard a data set that

contains many population uniques as risky.
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To estimate population uniques, Bethlehem et al. (1990) introduced the Poisson-gamma
model, which is the first application of the superpopulation model in the field of the microdata
disclosure problem. Under the superpopulation model based approach, we assume that the
population is generated by an appropriate (prior) distribution. By means of the assumption on
the prior distribution, the risk inference is reduced to the problem of parameter estimation. We
should be pragmatic since it is impossible to know the true mechanism of generating population.
Here we adopt empirical Bayes methods; what is required is a prior distribution flexible enough
to describe various populations.

We briefly survey various superpopulation models used in literature. Several authors apply
the Poisson-gamma model to actual data sets, but insufficient fits are reported. See Skinner
(1992) or Skinner and Holmes (1993). Skinner and Holmes (1993) applied the Poisson-lognormal
model and the logarithmic series distribution to US and Italian data sets. These models have
mainly been studied in ecology, where frequencies of species are estimated from sample frequency
structure. The stochastic abundance model (Engen (1978)) is used for modeling the populations
consisting of large number of species in statistical ecology. Hoshino and Takemura (1998) clarified
relations between various superpopulation models and revealed that the superpopulation model
based approach in the disclosure problem has a connection with the stochastic abundance models.
The Poisson-lognormal model is studied, for example, in Bulmer (1974) or Aitchison and Ho
(1989). Fisher’s classical logarithmic series model (Fisher et al. (1943)) leads to many versions
of superpopulation models; see Section 3.2 of Engen (1978) and Johnson et al. (1993). Hoshino
and Takemura (1998), based on an interpretation of Anscombe (1950), noted that a limiting
Poisson-gamma model becomes a logarithmic series model different from Skinner and Holmes’
(1993). Takemura (1999) considered a sampling distribution from the Poisson-gamma model
and derived the Dirichlet-multinomial model. Takemura (1999) also identified that the Ewens
sampling formula originally developed in genetics is a limiting form of the Dirichlet-multinomial
model. See Ewens (1990), Sibuya (1993) and Johnson et al. (1997) for the Ewens distribution. In
Hoshino and Takemura (1998), we showed that the Ewens model is derived from the logarithmic
series model by the same conditioning argument as the Dirichlet-multinomial model is derived
from the Poisson-gamma model. Watterson (1973) referred to the Ewens distribution as a
version of the logarithmic series distribution.

Pitman (1995) considered the random partition of the positive integers, and obtained a new

generalization of the Ewens distribution. See Pitman (1996), Pitman and Yor (1997), Yamato



et al. (1999) for the context. The obtained distribution is the Pitman sampling formula, which
contains the Ewens model and the Dirichlet-multinomial model as special cases. Thus the fit
of the Pitman model is at least as good as that of these models, though the degree of freedom
decreases. If the Pitman model greatly improves prediction on the disclosure risk, then the
superpopulation model based approach becomes much more relevant not only for the disclosure
problem but also for the stochastic abundance model fitting. It is important to apply above
superpopulation models to actual data sets and compare each model on the same appropriate
criterion. The conventional y? type criterion is not desirable for the comparison of models that
have different number of parameters. Therefore we choose the Akaike Information Criterion
(AIC), which adjusts the differences in the number of parameters on the comparison. It seems
that tools of testing hypotheses are still commonly used for the purpose of model selection in
the area of stochastic abundance models. We later discuss the model selection criterion.

The organization of this paper is as follows. In Section 2 we derive some relevant moments of
the Pitman model. Estimation problems concerning the Pitman model are discussed in Section
3. We compare the Pitman model with other superpopulation models in Section 4, applying the
models to Japanese labor force survey data sets. Section 5 offers motivation for the Pitman model
and the conclusion. In the rest of this section we fix notation and define existing superpopulation

models compared in Section 4.

1.1 Notation and summary of existing superpopulation models

Consider a discrete population of size N. Let K denote the total number of the cells and let
F;, j=1,...,K, denote the size of the j-th cell. Under the superpopulation model approach
we consider F, j = 1,..., K, as random variables; the population size N = Z]K:l F; may or
may not be a random variable. Let S; denote the number of the cells of size i. In terms of the
indicator function

i
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which are called size indices (Sibuya (1993)) or frequencies of frequencies (Good (1965)). These
ideas correspond to equivalence class (Greenberg and Zayatz (1992)) in the context of the mi-
crodata disclosure problem. In disclosure risk assessment, the number of population uniques S

is of particular importance.

Obviously
o [e.e]
> Si=K, Y i-S=N.
i=0 i=1

Here K is the total number of the cells including the number of the empty cells Sy. In the
following we denote the number of the non-empty cells by
00
U=K-5=>_ 5.
i=1
One important difference between the disclosure problem and statistical ecology is the han-
dling of U and K. In statistical ecology usually we only consider the marginal distribution of
(S1,...), and do not include K in the models. The reason is that species of frequency zero in
population have little meaning and there exists no means to specify Sy in statistical ecology.
However, as far as the microdata problem is concerned, we can set K as the product of the
number of categories in variables assessed. Generally K becomes huge. The limiting process of
K — oo is thus reasonable.
In the following we summarize existing superpopulation models. We classify these models
by paying attention to the following two points: (a) whether the population size IV is a random
variable or not, and (b) whether Sy is defined or not. Models in which Sy is not defined are

described without explicit dependence on K.

Poisson-gamma model : The population size N is a random variable having the negative
binomial distribution, and Sy is defined. Under the Poisson-gamma model, F} is the Poisson
random variable with mean Nou and g has the gamma distribution with parameters v and (3,
which are assumed to satisfy the restriction v3 = 1/K. The unconditional distribution of F
becomes the negative binomial distribution. Furthermore F;, j = 1,..., K, are assumed to be
independently and identically distributed. In summary the Poisson-gamma model is defined by

the joint probability function of F}’s as

K
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The expected population size is E(N) = KE(F;) = KNoy3 = Np.

Poisson-lognormal model : The population size N is a random variable, and Sy is defined.
In the Poisson-lognormal model, F} is the Poisson random variable with mean A, and log A is
normally distributed with mean M and variance V. As in the Poisson-gamma model, F}, j =
1,..., K, are assumed to be independently and identically distributed. The Poisson-lognormal

model is defined by

K

P(Fy,...,Fx) =[]
j=1

1 o0
———— [ Mi7lexp(=) — (log A — M)?/2V)d. 2
v p(—A— (log A — M)*/2V) @

The expected population size becomes K exp(M + V/2). In this paper we restrict the model
such that Kexp(M + V/2) = Ny. Namely M = log Ny —log K — V/2, and V is the unique

parameter.

Dirichlet-multinomial model : The population size N is fixed, and Sy is defined. The

Dirichlet-multinomial model is the conditional Poisson-gamma model given N and defined by

_ NIKID(K) &5 (D(y+i)\% 1
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Logarithmic series model : The population size NV is a random variable, and Sy is not
defined. Fisher’s logarithmic series model is defined in terms of the joint distribution of size
indices S;, ¢ > 1. Let

i1
Ai=Ng 2 , i=1,2,...,
1

where Ny > 0, 0 <p <1 and g =1— p. Here S; is independent Poisson random variable with
mean \;. The joint probability function of the size indices (51, So,...) becomes
23 A exp(—\)
P(51,59,...) = H e
3!

i=1

(4)

Here only finite number of S;’s are nonzero. This model is the limiting form of the Poisson-

gamma model as K — oo with K~ fixed.



Ewens model : The population size N is fixed, and Sp is not defined. Applying the limiting
process K — oo to the Dirichlet-multinomial model with K+ = @ fixed, we obtain the Ewens

model with parameter 0:
oY N!
OINI TN, iSiS;)

P(Sy,...,Sy) = (5)

where IV =90+ 1)(0 +2)---(0+ N—-1), U=V, S;.

2 Some theoretical results on the Pitman sampling formula

In this section we introduce the Pitman model and derive some moments of the model needed
for the estimation.

Sibuya (1993) describes the urn scheme construction of the Ewens sampling formula. To
begin with, we explain the urn model implication of the Pitman model, based on Proposition 9
in Pitman (1995). Let us consider the following process: Suppose that n balls are distributed
over u urns such that no empty urn exists; we put a new ball to a new urn with the probability

of

0 + ua
) 6
0+n ()
or put the ball to one of the existing v urns with the probability of
Jj—«
7
6+n’ 0

where j is the number of balls in the urn. Starting the process with n = u = 0, we obtain the
Pitman sampling formula.

For each pair of real parameters o and @, such that either 0 < a <1 and § > —a, or a <0

and § = —ma for some natural number m, the Pitman model is defined by
olvel N (1 —a)li-1 o 1
P(S1,...,S8v) = N! o i ) ‘S (8)
j=1 J

where 0V = 9@+ a)--- (0 + (U —1)a), 0N =06 +1)--- (6 + N —1). If « equals zero, (8)
amounts to the Ewens model (5). Assuming that o <0, let # = —Ka >0,y = —a > 0. Then
(8) amounts to the Dirichlet-multinomial model (3).

Write

i>1 i>1



In the following we consider Uy = ZiJL S; as a random variable given N. Namely

glU:a] N 1—a)li—1l S 1 . .
ESESN,UN! 9IN] Hj:l(( j)! ) J@ lfU_la"'aNa

0 otherwise.

P(Uy =U) :{

Yamato et al. (1999) give the explicit form of (9), though it is complicated.

Theorem 1 Suppose that size indices are distributed according to (8). Then

L (1-a)fl LT N-j+1
where
E(Un-i) = O+ N—i—1 + > 0+1 IT a+ Wj)

Proof  First we show (10).
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= > f i 9+N_l(0+ (U—-1))P(Uy_; =U —1).

Since N_, (U — 1)P(Un—; = U — 1) = E(Un_;), (10) is proved.
To prove (11) we utilize a recurrence relation:

0+ E(UN)a

E =F
(Un+1) = E(Un) + IAN

(9)

(11)

(12)

(13)

where E(Up) = 0. Assuming that (13) is true, we can easily prove (11) by induction. The

relation of (13) holds from the fact that

P(Unt1=U) =P(Uny1 =U|Uy = U)P(Uy =U) +P(Unp1 =U|Uy =U = 1)P(Uy = U — 1)



and

0+ U« N —U«
PUn;1=U+1Uy=0U) = ,PUnNy 1 =U|Un=U) = ———
0+ N 0+ N

(14)
derived from (6) and (7). Q.E.D.

We can similarly calculate the factorial moment:

N N : N i
, N(R)glU:q] (1— a)b 1]
B( S(TJ)) = — ( . )P(Un - r=U~—r), (15)
W57 e —ymorea 15

where r = E;-V:l rj, R = Z;-v:l jr; and nt®) = n(n —1)---(n — R+ 1). The higher moments of

Un are evaluated through recurrence relations like (13). For example

N+ 0+ 2a
0+ N

20 + « 0
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E(Uns1”) = E(Un?) +

In particular we obtain

N6 + NOAE(UN_l)

B =" N1 (16)
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@y o NP0+ aUn_s)(0 + a(Un—2 + 1))
FST) = E 6+N—1)® ] (18)

from (10) and (15). These expectations lead to moment estimators discussed in Section 3.

3 Estimation with the Pitman model

In this section we consider the estimation of the disclosure risk under the Pitman model. We
denote sample size by n and sample size indices by s = (s1,...,8,). The total number of
nonempty cells or clusters is u = > ;" ; s;. Suppose that n individuals are drawn simply at

random without replacement.

3.1 The estimation of the parameters

The Pitman model enjoys the property of exchangeability, with respect to individuals in pop-

ulation, assumed in Lemma 1 of Takemura (1999). Accordingly the marginal distribution of



sample individuals coincides with the prior distribution of values of n individuals directly drawn

from the superpopulation. That is to say,

gluel (1 — )1 1
( : )% — (19)
0[”] j=1 _]! Sj!

P(s1,...,8n) =nl!

is obtained from replacing N and U in (8) by n and u. We can show the result in another
way. Suppose that IV objects are partitioned into classes according to a probability distribution
pN- A partition structure (Kingman (1978)) is a sequence pi,po,... of distributions wherein,
assuming that an object is deleted uniformly at random from the N objects, the partition of
the N — 1 remaining objects is distributed according to py—_1. The Pitman sampling formula is
known to have a partition structure, with the result that (19) holds.

We then construct the Maximum Likelihood Estimator (MLE) of 6 and «. Let the logarithm
of the right hand side of (19) be L. The MLE is the solution of

oL = 1 nlog
—_ = _— = 0
00 Z 0+ ia Z 0+
=1 1=1
and
(‘9L u—1 i n 1—1 1
A S A S
da  HO+ia o o
These simultaneous equations can be solved by the Newton-Raphson method using second
derivatives:
2 = | N “f 1
(00)? = (0 +i)? = 0+ )2’
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To solve the ML estimation, we investigate approximate moment estimators for the starting

values of the Newton-Raphson procedure. Our moment estimators are

nuc — s1(n — 1)(2u + ¢)
2s1u + s1¢ — nc

6 — , (20)



& = é(sl —n)+(n— 1)31, (21)

where ¢ = s1(s1 — 1)/s2. The derivation is given in Appendix. In six of seven cases in Section
4, except for Case 1, these estimators gave convergences in the Newton-Raphson procedure. In

Case 1 the author reached the solution by random starting value generation.

3.2 Risk inference

In the following we discuss some statistics concerning the disclosure risk under the Pitman
model. We state three propositions useful for the disclosure problem. All the proofs are given
in Appendix.

As regards the risk inference, we shall evaluate the expectation of the number of population
uniques E(S7) with the ML estimates of the parameters. However necessary moments given in
Section 3 are not in convenient forms to compute. From Theorem 1 we investigate simple forms

of the moments.

Proposition 1 If a # 0, the expectation of Uy under (8) is reduced to

0 6+ a)

E(UN) = a( oIN] - 1)' (22)

The result of Yamato and Sibuya (1999) coincides with (22). We can rewrite (22) using the
gamma, function. Based on the asymptotic property of the gamma function, we find a useful
approximation of E(Uy), which is a special case of Lemma 2 in Yamato and Sibuya (1999). If
N is sufficiently large

O T(O+atNIO) . TO+1)
EUN) = S Ge s +a) V™ aT@+a)

N (23)

for a # 0. Our expression of E(S7) depending on E(Uy_1) then becomes simpler. We obtain

NT(@+a+N-1I@+1) T@O+1)
T+ N)T(0+ a) T T +a)

E(S)) = Ne, (24)

As a result, the evaluation of E(S7) is not very hard, once the ML estimates are obtained.

The following propositions may have interesting implications on the disclosure problem.

10



Proposition 2 Suppose that size indices are distributed according to (8). For a > 0

. E(S)
im
N—oo E(Up)

= Q.

Proposition 2 suggests that the ratio of population uniques to the number of non-zero fre-
quency groups is «, which is smaller than unity; the implication is consistent with the author’s
experience that the Ewens model (i.e. & = 0) tends to underestimate the number of population
uniques. Since the Ewens model is a limiting form of the conditional Poisson-gamma model,
these models give similar population unique estimates as can be seen in Section 4. It is suggested
that the poor performance of the Poisson-gamma model and related models, including the loga-
rithmic series distribution, occurs when population uniques constitute no negligible proportion
of the population. In other words these models might be suitable only for safe data sets.

Based on Proposition 2, we propose a simple estimator of a:

a=21 (25)

u

We could replace the previous moment estimator (21) by (25); see Table 7 of Section 4.

Proposition 3 Let n/N = f be fized. If we assume (8) and (19) then

. E(S1)
]\;E)noo E(Sl)

f=r (26)

The left hand side of (26) is interpreted as the ratio of population uniques in the sample
to sample uniques si; this ratio is often an index of the disclosure risk. Combining the simple
estimate of (25), we can roughly evaluate the risk of a data set by f!~%, where the sampling
ratio f is known. This simple procedure is useful because the data editing for anonymization

requires repeated trial and error.

4 An application to Japanese labor force survey data

In this section we examine performances of the Pitman model and other superpopulation models.
Takemura (1998) gives some size indices data of the Japanese labor force survey. We apply the

Pitman model (8), the Ewens model (5), the Poisson-gamma model (the Dirichlet-multinomial

11



model (3)) and the Poisson-lognormal model (29) to the data, and compare each model by its
Akaike Information Criterion (AIC) value.

A x? type statistic like

X2 _ zzzl (Si ;(}25)31)) (27)

is conventionally used to evaluate the goodness of stochastic abundance model fitting. If
(s1,...,8n) is multinomially distributed given u, then (27) is the classical x? test. The symmet-

rical model description in terms of independent F);’s can be converted in terms of S;’s, where

K )
P(So,...) = <So s ) il;[OP(F = )% (28)
is in the form of multinomial distribution. Since the marginal distribution of the multinomial
distribution becomes multinomial, the y? type statistic might be suitable for the Poisson-gamma,
model and the Poisson-lognormal model. However the assumption seems to be inappropriate
for the other superpopulation models. As described in Section 7.2 of Engen (1978), we can only
use (27) to “form a picture of the similarity” between s;’s and E(s;)’s. In the disclosure context,
Zayatz (1991) used the Kolmogorov-Smirnov goodness of fit test for the Poisson-gamma model
and found a significant lack of fit at the .01 level. Skinner and Holmes (1993) calculated (27)
and likelihood ratio statistics for the logarithmic series distribution and the Poisson-lognormal
model. These ideas are based on the theory of testing hypotheses and we can, only at best,
tell whether the model assumption is acceptable or not. In other words these statistics are not
comparable between different models.

Let the number of parameters in a model be A. Let the log likelihood of the model maximized
with respect to the parameters be denoted by L. The AIC selects the model that has the lowest
—2L + 2. See Atkinson (1980) or Konishi and Kitagawa (1996), for example.

The likelihood depends on the sampling mechanism. We assume simple random sampling
without replacement for the Pitman model, the Ewens model and the Poisson-gamma model.
The sampling distributions of the Pitman model and the Ewens model are again the Pitman
model and the Ewens model as in (19). Under simple random sampling without replacement,
the sampling distribution of the Fisher’s logarithmic series model is the Ewens model (Hoshino
and Takemura (1998)). Thus we only evaluate the logarithmic series model through the Ewens

model. See Sibuya (1991) or Hoshino and Takemura (1998) for the parameter estimation of the
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Ewens model. The sampling distribution P(sg, ... |n) of the Poisson-gamma model becomes the
Dirichlet-multinomial model. Thus we evaluate the MLE of the Poisson-gamma model by the
Dirichlet-multinomial model.

Under simple random sampling without replacement, the sampling distribution P(so,...|n)
of the Poisson-lognormal model is hard to manipulate. Therefore we assume the Bernoulli
sampling (Sarndal et al. (1992)) in which each individual is drawn if a coin with some success
probability results in head. This scheme is a convenient approximation to simple random sam-
pling without replacement, but it is more natural in ecological sampling than simple random
sampling without replacement. When the success probability is n/Ny, we obtain the sampling
distribution P(so,...) of the form (28) replacing Ny by n. Another approximation we use is the
normal approximation of the sample size distribution. The variance of the sample size becomes
T = K(exp(M + V/2) + exp(2M + 2V') — exp(2M + V')), and the expected sample size is set
to n. Therefore we set the probability of the sample size to be n as 1/ V27 T. Consequently the

conditional Poisson-lognormal model P(sq,...)/P(} is; = n) is approximated by

P(s0,. |n) = (SO " Sn) li{z'\/;ﬂ'—V /0 XL exp(=A — (log A — M)2/2V)dA}VarT, (29)

where M = logn — log K — V/2. We need numerical integration to evaluate the model. A
transformation suited to the Hermitian integration is discussed in Aitchison and Ho (1989). The
author programmed the numerical integration with GNU C compiler, checking results against
Grundy (1951).

Now we sketch the data to be assessed. The purpose of the labor force survey is to elucidate
the current state of employment and unemployment in Japan. The data at hand was collected
in January 1995. The population of the survey is composed of all persons 15 years old and
over usually residing in 47 prefectures of Japan. However the data at hand consists of persons
only in nine prefectures near Tokyo. The sample size n is 27230. Corresponding population
size N is about 35.85 million. For simplicity we assume that individuals are drawn simply at
random without replacement, although the actual sampling scheme is more complicated. Seven
different combinations of “global recoding” and “global suppression” are applied to the data.
See Willenborg and de Waal (1996) for these techniques of anonymization. The size indices
are enumerated with respect to the categorization of nine (Case 1-2), eight (Case 3-6) and

seven (Case 7) variables. These variables are geographical codes, classified number of persons
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in household, relationship to head of household, sex, age, and marital status. Table 1 provides
more information on the categorization. The results of our model fitting are tabulated in Table
2 to 5.

The Pitman model highly dominates in all the cases, and the Poisson-lognormal model shows
the least performance. Engen (1978) and Skinner and Holmes (1993) reported relatively good
fits of the Poisson-lognormal model based on the x? type statistic in (27). It might be the case
that for the Poisson-lognormal model the maximization of the marginal likelihood on (sq, ..., sy)
gives a different estimate. Figure 1 illustrates the fits of the Ewens model, the Pitman model
and the Poisson-lognormal model in Case 7. The vertical axis corresponds to E(s;)’s under the
ML estimates of the parameters, and the horizontal axis corresponds to ¢ = 1,...,15. The
actual sample size indices are plotted in the same scale. Under the Poisson-lognormal model,
E(s1) shows huge overshoots. It seems that the inclusion of zero frequency groups causes the
lowest fit of the Poisson-lognormal model. Note that the Pitman model ignores the restriction
that K is finite. Thus for fairer comparison, we explore K = K* in which the Poisson-lognormal
model attains the smallest AIC value; it is a kind of marginal fitting. The results are provided
in Table 6. The Pitman model still dominates except for Case 3. We accordingly observe the
strong support of the Pitman model.

However we further analyze the results for more detailed evaluation. Case 3 shows some
peculiarity when we apply the simple estimator (25) of . Table 7 lists differences between the
MLE and (25); there is a large difference in Case 3 of Table 7. We may be able to regard (25)
as a model check. Since there exists no all-purpose estimation procedure, we should probably
examine the possibility of an alternative approach.

Let us then return to Table 6. We first realize that K is much greater than K*, and E(S})
with K* is very small. These facts suggest that the fit of the Poisson-lognormal model has
no robustness in withstanding changes of K. The presence of structural zeros, for example
caused by the cross-classification of age and marital status, may lead us to accept a claim that
true K is smaller than the product of the number of categories in variables assessed. Although
the author considers that structural zeros are also realizations from a superpopulation, let us
consider the possibility of such decrease in K. We may regard K* as an estimate of true K, but it
seems that K™ is too small; a great underestimate of K implies an underestimate of population
uniques. Concerning the risk inference, an underestimate should be more heavily penalized

than an overestimate. It is thus not persuasive to believe that K* equals true K. Note that
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an arbitrariness can not be totally eliminated in determining true K. It is therefore preferable
that the risk inference does not depend on K. However, this independence does not seem to
hold in the Poisson-lognormal model. Moreover Engen (1978) provides an example in which
the estimated parameter of the Poisson-lognormal model by marginal (excluding zero groups)
fitting varies with respect to the size of the sample from the same population. It suggests that
the use of K* by marginal fitting leads to the erroneous estimate of population uniques.
Figure 1 clearly represents a typical tendency of model fitting in the disclosure field. We
often observe a great difference between s; and s3. The author considers that “shape” parameter
is required to describe this kind of non-smoothness. In view of the urn model implication, the
Pitman parameter « specially adjusts the rate of unique cells. This fact would be the reason

why the Pitman model dominates.

5 Discussion
5.1 The Pitman model and the lognormal distribution

Construction 16 of Pitman (1995) provides another derivation of the Pitman sampling formula.
In this section we observe that it gives a justification similar to that of the lognormal model for
the Pitman model. This interpretation may motivate the Pitman model.

The lognormal distribution has long been used to describe various populations of species,
savings in households, mineral gains and numerous seemingly unrelated objects. Halmos (1944)
gave the following justification over the wide applicability of the lognormal distribution. Let
W = (W1, Wa,...) be a sequence of random variables, where 0 < W; < 1,i = 1,2,.... Define
W; =1—W,;. Let

P=W---W;_1W;, i=1,2,.... (30)

Then P = (Py, P,,...) constitutes a random classification where the i-th group has proportion
P;. The equation (30) implies that P; = (1— P, — P,—---— P;_1)W;. Hence the process allocates
the residual. The logarithm of (30) equals

log P; = log Wi + -+ + log W;_1 + log W;.

The right hand side is a sum of random variables. Thus under appropriate regularity conditions
the central limit theorem holds, and log F; is normally distributed. Namely P; is subject to the

lognormal distribution in many cases.
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Assume that X, j =1,..., N, are independently identically distributed given P with P(X; =
i|P) = P;,i =1,2,.... Here X is the j-th sample from the infinite population of individuals. We
can interpret P; as the long run relative frequency of the i-th group. The marginal distribution

of the frequency F; = Zévﬂ I(X; = i) given P is the binomial distribution:
N N_
P(F; =y|P) = PY1-P)N7Y, y=0,1,...,N.
Y

It is well known that the binomial distribution above is approximated by the Poisson distribution
with mean NF;. If log NP, = log N + log P; is subject to the normal distribution, then the
marginal frequency of the i-th group is approximately the Poisson-lognormal.

We now turn to the Pitman model. Let us suppose that W; of (30) independently possesses
the beta distribution with parameters (1 — a, 0 + ia), where 0 < a < 1,0 > —a. Now we can
explicitly derive the distribution of the samples X1, ..., Xy. According to Pitman (1995), the
size indices of the samples are then subject to (8): the Pitman model, in fact.

We have observed that the same residual allocation structure induces the Pitman model
and the lognormal distribution. The Pitman model may consequently have a motivation for
use in the disclosure field, because the Poisson-lognormal model has been used to measure the
risk. Yamato et al. (1999) clearly explain the derivation of the Pitman model from the beta
distribution. The corresponding derivation of the Ewens model is given in Johnson et al. (1997).
The process of (30) with independent W; is known as the residual allocation model. See Pitman

(1996) for a survey.

5.2 Concluding remarks

We saw that the Pitman model fits well to the Japanese labor force survey data set in comparison
with other existing superpopulation models. It should also be emphasized that the computation
on the Pitman model is not so heavy compared to the Poisson-lognormal model. Thus it seems
that the Pitman model is a promising tool for the disclosure risk assessment. This section
appends a few arguments in this regard.

We generally face difficulties in estimation problems concerning the tail of a distribution,
such as population uniques. For instance, even the approximation of simple random sampling
without replacement by the Bernoulli sampling might considerably affect the distribution of the

tail; preferable models are those that employ no approximation in the sampling scheme. The
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Pitman model, due to its partition structure, is consistent with the sampling scheme in the
disclosure field. With stratified sampling structure, we may apply the Pitman model in each
stratum.

However we should note that the Pitman model ignores the restriction of K. If there is a
great difference between the sample size and the population size, then the disregard of K may
cause the overestimate of the risk; it is, in the extreme, possible that U becomes larger than
the disregarded K. In applying the Pitman model, we should check whether U is too large

compared to K.

Appendix

We first derive the moment estimators (20) and (21). For simplicity we use E(s1) and E(s1(s1 —
1))/E(s2) to estimate € and o. We denote the total number of clusters given n — 1 and n — 2 by
Up—1 and u,_9. By (16)

(@ +n—1)E(s1) —nb

- nE(up—1) (31)

Referring to (17) and (18), we derive
oo E(s1(s1 — 1)) _ 2E[(0 + aup—2)(0 + a(uy o +1))]
E(s2) (1 —a)E(0+ aup_2)
2E(0 + a(un—2 + 1))
(1-a) '
Then
C—26

T B(uy ) +C+ 2 (32)

From (31) and (32),
0_ nE(up—1)C — (n — 1)E(s1)(2E(up—2) + C + 2) (33)

(E(s1) —n)(2E(up_2) + C +2) + 2nE(uy 1)

Now we give the moment estimator of §. Ignoring the relation E(u,—1) = (8 + n)/(0 + n +
a)E(u,) — 60/(6 + n + «), we replace E(up—1) of (33) by u and E(up_2) by u — 1, whereby the
estimator becomes simpler. Let C' = ¢ = s1(s; — 1)/s2. Substituting E(s;) of (33) by s1, we
obtain (20). (21) is a direct consequence of (31).

In the following we show the propositions stated in Section 3.

17



Proof of Proposition 1 We derive (22) from (11). The proposition is shown by the relation
that

aE(Un) « 2 9+]+a
1+ = =
T 9+N—1+20+l H 6+j )
j=l+1
0+N—1+a = 9+]+a o
= N T Z H ) }
O+ N—1 O+l S 0+ 0+ N—2
_ (@+N-140a)@+N - 2+a NE N3 0+]+oz) o«
B O+N-1)(0+N —2) 6+ 3 6+ N -3

=0 =l+1

Q.E.D.

To prove Proposition 2, we need the lemma below.

Lemma 1 For a >0,

lim E(UN) = o0

N—o0
Proof  With respect to nonnegative o, E(Up) is monotonically increasing. Thus it suffices
to show that F(Uy) diverges at a = 0. When « equals zero
N—1
E(Uy) =

=0

from (11), and it is well known that the right hand side diverges as N — oc. Q.E.D.

Proof of Proposition 2 From (10) we obtain

E(S1)  Na E(Un-1) " N6 1
E(Uy) 6+N-—-1 E(Uy) 60+N-1EUy)
Since
BE(Uy) = EUn_1)(1+ -2 4 0
N = AN O+N' " O+N

from (13), E(Uy)/E(Un-1) — 1as N — oo. Also 1/E(Ux) — 0 by Lemma 1. We consequently
obtain the formula. Q.E.D.
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Proof of Proposition 3 By the relation of (24),

E(S;)) NT(@+a+N-—1I(0+n)

E(s1) nl(@+N)T@+a+n—1)"

The formula then holds because of the asymptotic relation of the gamma function. Q.E.D.
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Variable Case 1 Case 2 Case 3

(A) Prefecture code 9) (9) (9)
(B) — zone code 824 824 824
(C) Persons 15 years old & over 8 3 3
(D) — under 15 years (male) 6 3 2
(E) — under 15 years (female) 5 3 (D)
(F) Relationship to the head 12 5 5
(G) Sex 2 2 2
(H) Age 100 20 10
(I)  Marital status 4 4 4

K (Cell total) 1898496000 17798400 1977600

Variable Case 4 Case 5 Case 6 Case 7
(A) Prefecture code 9 9 9 9
(B) — zone code X X X X
(C) Persons 15 years old & over 8 8 8 8
(D) — under 15 years (male) 6 6 4 6
(E) — under 15 years (female) 5 5 4 (D)
(F) Relationship to the head 12 12 12 12
(G) Sex 2 2 2 2
(H) Age 100 20 20 20
(I)  Marital status 4 4 4 4

K (Cell total) 20736000 4147200 2211840 829440

Table 1: The number of categories in each variable (Case 1-7 of Section 4).

NOTE: “x” implies that the variable is suppressed. The underline implies that the number of categories is smaller

than that of Case 1. ”(D)” implies that the information on the variable is represented by the variable (D).

Case 1

Case 2

Total cell number (K)

1898496000

17798400

Total non-empty cell number (u) 25923 21851
Sample uniques (s1) 25046 18275
Maximum cell size 28 28

Ewens parameter § by MLE

280628.969879

52004.115657

Log likelihood (AIC)

~518.9 (1039.7)

-245.3 (492.6)

Estimated population uniques E(S1) 278449.3 51928.8
Dirichlet-multi parameter v by MLE 0.000148 0.002928
Log likelihood (AIC) ~518.9 (1039.8) 72463 (494.6)
Estimated population uniques E(S1) 278244.1 51044.0

Pitman parameters «, 8 by MLE

0.917448, 16389.753923

0.520587, 21297.598824

Log likelihood (AIC)

-111.8 (227.6)

-100.9 (205.8)

Estimated population uniques E(S;) 19000174.4 1017904.0
Poisson-lognormal parameter V by MLE 10.530755 8.524957
Log likelihood (AIC) -547296.6 (1094595.2) -5750.6 (11503.1)
Estimated population uniques E(S1) 11950655.9 1773952.1

Table 2:

Case 1-2 of Section 4.
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Case 3 Case 4
Total cell number (K) 1977600 20736000
Total non-empty cell number (u) 18221 12390
Sample uniques (s1) 12919 8049
Maximum cell size 41 54

Ewens parameter § by MLE

24249.278863

8804.206385

Log likelihood (AIC)

-142.0 (286.1)

-686.0 (1374.0)

Estimated population uniques E(S1) 24232.9 8802.0
Dirichlet-multi parameter v by MLE 0.012424 0.000425
Log likelihood (AIC) ~143.8 (289.6) -686.7 (1375.4)
Estimated population uniques E(S1) 22427.7 8769.8

Pitman parameters a, 8 by MLE

0.140768, 19948.932049

0.501239, 2585.173765

Log likelihood (AIC)

-131.4 (266.8)

-101.9 (207.7)

Estimated population uniques E(S1) 57260.1 308054.4
Poisson-lognormal parameter V by MLE 5.166813 14.268244
Log likelihood (AIC) -4235.1 (8472.2) -14134.2 (28270.4)
Estimated population uniques E(S1) 357874.6 495826.6

Table 3:

Case 3—4 of Section 4.

Case 5 Case 6
Total cell number (K) 4147200 2211840
Total non-empty cell number (u) 6657 6653
Sample uniques (s1) 3813 3805
Maximum cell size 154 154

Ewens parameter § by MLE

2813.718472

2810.978767

Log likelihood (AIC)

-997.1 (1996.2)

993.1 (1988.2)

Estimated population uniques E(S1) 2813.5 2810.8
Dirichlet-multi parameter v by MLE 0.000679 0.001271
Log likelihood (AIC) -998.6 (1999.3) -996.0 (1993.9)
Estimated population uniques E(S1) 2795.9 2778.0

Pitman parameters «, 8 by MLE

0.505272, 523.377001

0.504301, 525.742679

Log likelihood (AIC)

-219.7 (443.3)

-219.7 (443.5)

Estimated population uniques E(S;) 145294.2 144053.2
Poisson-lognormal parameter V by MLE 14.370145 13.053184
Log likelihood (AIC) -13291.8 (26585.5) -10398.8 (20799.7)
Estimated population uniques E(S1) 320562.6 199167.2

Table 4:

Case 5-6 of Section 4.
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Case 7

Total cell number (K) 829440
Total non-empty cell number (u) 5682
Sample uniques (s1) 2974
Maximum cell size 154

Ewens parameter § by MLE

2188.670938

Log likelihood (AIC)

759.9 (1521.7)

Estimated population uniques E(S1) 2188.5
Dirichlet-multi parameter v by MLE 0.002646
Log likelihood (AIC) -764.8 (1531.6)
Estimated population uniques E(S:) 2138.9

Pitman parameters «, § by MLE

0.443278, 524.588977

Log likelihood (AIC)

-228.2 (460.3)

Estimated population uniques E(S1) 72949.3
Poisson-lognormal parameter V by MLE 9.209263
Log likelihood (AIC) -10761.7 (21525.4)
Estimated population uniques E(S1) 108974.3

Table 5: Case 7 of Section 4.

| Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case7
K> 657385 198613 71065 36594 10258 10254 7883
Log likelihood -635.2 -157.5 -122.5 -864.9 -2153.4 -2148.4 -2103.6
AIC 1272.4 316.9 246.9 1731.9 4308.7 4298.7 4209.3
E(S1) with K* 3894.5 431.9 1.5 5.3 0.0 0.0 0.0
E(S1) with K 33902689.2 | 4076872.5 104255.6 | 4273132.0 480176.7 147338.8 8979.4
Table 6: Poisson-lognormal model fits with optimized K (Section 4).
| Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case7 |
s1/u 0.97 0.84 0.71 0.65 0.57 0.57 0.52
a by MLE 0.92 0.52 0.14 0.50 0.50 0.50 0.44

Table 7: The simple estimates of the Pitman parameter o (Section 4).
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Figure 1: Fits of E(s;)’s under ML estimates (Case 7, Section 4).
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