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Abstract

The present article shows that a limiting argument that is essentially the law of small
numbers produces a proper discrete multivariate distribution from any generalized Pois-
son distribution. Based on this result, Engen’s Extended Negative Binomial (ENB) model
is derived from the Poisson-Pascal distribution, which is a generalization of the inverse
Gaussian-Poisson distribution. The ENB model is also derived from Sichel’s generalized in-
verse Gaussian-Poisson distribution. The application of the ENB model is discussed thereto.

Keywords: Compound Poisson, Conditional inverse Gaussian Poisson, Infinitely divisible,
Random clustering, Species abundance

1 Introduction

Engen (1974) proposed the Extended Negative Binomial (ENB) model to describe the popula-
tion structure of frequencies of species. A population model of this type is called a stochastic
abundance model (Engen (1978)) and is statistically a distribution over nonnegative integers.
This kind of population modeling has extensive applicability and is thus an important subject.
Many linguists, for instance, have applied population models to word frequencies, and recently
statistical disclosure control demands continuous development in this modeling; see Hoshino
(2001) for a brief survey.

The ENB model was, however, not clearly specified enough to attract many statisticians’
interest, as explained in Section 1.1. Consequently, there remain many points to be clarified. In
order to elucidate relationships among the ENB model and other models, the present article in
Section 2 shows a limiting property of a population model that consists of generalized Poisson
distributions in the sense of Johnson et al. (1993, p.351). An instance of this distribution called
Poisson-Pascal will result in the ENB model. It is also shown that the same type of limiting
produces the ENB model from Sichel (1971)’s generalized inverse Gaussian-Poisson distributions.
The present article demonstrates the applicability of the ENB model in Section 3. Concluding
remarks are given in Section 4.

Because the class of generalized Poisson distributions contains most of distributions that
have been used to describe frequency data, these discussions bring profound understanding on
models for count data.
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1.1 Background

In the following, N denotes the set of natural numbers; Ny denotes the set of nonnegative

integers. For an arbitrary nonnegative integer J, the set of positive integers from one to J, or

{1,2,...,J}, is denoted by N(J). Consider a population consisting of J cells (groups, species,

words), each of which is uniquely indexed by j, where j € N(J). The j-th cell contains Fj

individuals, where Fj € Np, and the total number of individuals is denoted by N = Z}‘le F
Let S; denote the number of cells of size i. More specifically,

J
= I(F;=1i), ieN,

=1
where I(-) is the indicator function:

, 1, F=i,
I(Fj_l)_{ 0. F,+i.

In the statistical literature, (Sp, S1,...) are called size indices (Sibuya (1993)) or frequencies of
frequencies (Good (1953)).
Obviously the §; are nonnegative integers that satisfy

=0

S0 S = N. (1)

It is noteworthy that J is the total number of cells including empty cells, which may correspond
to unseen or extinct species. In the following

U:iSi:J—SO (2)

=1

denotes the number of non-empty cells.

A typical assumption of a model for count data is that F}, j € N(J), is independently and
identically distributed over nonnegative integers. Then, as explained in Appendix A, size indices
are multinomially distributed over Ny>®

F _ 00
P(Slztla‘s’QZtQ J'H L Z s t():J—ZtiZO. (3)

For example, suppose that F};, j € N(J), is independently identically distributed as the negative

binomial distribution:

(1—-6)76"T(y +7)
L(y)y! ’

P(F;=y) = yeNp, 0<0<1,0<7. (4)



The joint distribution of size indices results in

o0

T(i+ g 1 -
P(51=t1,52=t2:---):~]!(| I(%(I—Q)ml)t’;a to=J — § ti > 0. (5)
i=0 ’ v i=1

The expectation of a size index is

(1—0)0'T(i + )
L(y)! ’
under (5). The population size N becomes a random variable, and let us restrict its expectation

to the actual population size Ny, which is usually given in practice. Under (5), the restriction
E(N) = 32, iE(S;) = Ny is equivalent to

E(SL) =J 1 € Np, (6)

I N0(19 o). o

An actual population often consists of very large number of cells. It is thus reasonable to
consider the limit of a model as

J — oo, where E(N) = Ny fixed. (8)

Anscombe (1950) pointed out that applying (8) to (5) produces the logarithmic series model:

e Aiti exp *)\Z’
P(slztl,SQZtQ,...):H+, (9)
i=1
where .
No(1—0) 6"
A= ——"—.
0 i

Under (9), each S; is independently subject to the Poisson distribution with mean A;, which is
henceforth denoted by Po(A;). The model (9) is named after the logarithmic series distribution
(Fisher et al. (1943)), since the series of \; is based on the same series expansion.
Using the restriction (7), we can rewrite (6) as
No (1— 000 (i +1)

E(Si) = NCES 1= 7(4;7.0). (10)

Observing (10), Engen (1974) claimed for ¢ € N that the natural lower bound of v is -1 in
contrast to the logarithmic series model where v — 0; the “extended” part of the ENB model
is this newly introduced area of —1 < v < 0. However, only the expectation of a size index (10)
was given, and the joint distribution of size indices was not specified. See Section 3.4 of Engen
(1978) or Section 5.12.2 of Johnson et al. (1993) for more information. To avoid confusion, the
ENB model is discriminated from the Extended (truncated) Negative Binomial distribution:

= 00~ T( £ Dal x7(x;7,0) ,xeN,0<h<1,—-1<vy<O. (11)

When + is positive, (11) is the usual truncated negative binomial distribution. Sichel (1997)
remarked that the ENB distribution fits a good number of observed species frequencies rather



well as its skewness lies somewhere between that of the logarithmic series distribution and the
lognormal-Poisson distribution. This fact accords with Engen’s claim that the ENB model can
describe various actual populations.

Recently, Hoshino (2002) obtained a population model:

-~ —7(i;-1/2,0))7(i; —1/2,0)"
P(S1 = 11,8y = 1o,..) = [ SRTEROE AR (12)
i=1 v

where .
2Ngv1 — e(g)i(% —3) NoVI—00'T(i—1/2)

0 2 i 0 I(1/2) T(G+1) 7
(—)!'=1and (2¢ —3)!! = (20 —3)(2{ —5)--- 1. In (12), each S; is independently distributed as
Po(7(i;—1/2,0)). Hence (12) satisfies the restriction (10) with v = —1/2 and can be regarded
as a special case of the ENB model. Let us consider the following ENB model:

T(i;—1/2,0) =

oo . . . ti
P(Sl _ t1752 _ tg, N ) _ H exp( T(Za’thﬁ))T(la’Yve) ; (13)
i=1 v

where —1 < 4 < 0. Henceforth (13) is referred to as ENB(v), and (12) is ENB(—1/2).
The derivation of ENB(—1/2) is as follows. Suppose that Fj,j € N(J), is independently and
identically distributed as the Inverse Gaussian-Poisson (IGP) distribution:

Yy
P(F = y) — \/270‘ exp(ay/T— 9)%1@_1&(@), yeN,O<a,0<0<1,  (14)

where K (-) is the modified Bessel function of the third kind of order v; see Chap. 7.1 of Seshadri
(1999) for the IGP distribution. Equation (12) is the result of applying the limiting argument

(8) to this IGP population model. The next section investigates what kinds of generalizations
of the IGP distribution lead to ENB(y) as (8).

2 The derivation of the ENB model

This section explicates two methods each of which produces ENB(«). The first one uses the
general property of an infinitely divisible distribution over nonnegative integers. In this way, we
also generalize known results about conditioning a population model on N. The second one links
Sichel’s generalization of the IGP distribution with the ENB model. All the proofs of theorems
in this section are provided in Appendix B.

A good place to start is to examine the condition under which the limiting distribution of a
size index is an independent Poisson distribution. We have seen that, if Fj, j € N(J), is indepen-
dently and identically distributed, size indices are subject to the multinomial distribution (3).
Because the marginal distribution of the multinomial distribution is the binomial distribution,
the law of small numbers applies except for Sy (or any margin). Engen (1977) summarized this
result as Lemma 1 below. The derivation of independent Poisson distributions from a finite-
dimensional multinomial distribution appears, say, in Johnson et al. (1997, p.124); the set of
finite number of independent Poisson distributions is called a multiple Poisson distribution there.



Lemma 1 Let F},j € N(J), be independently and identically distributed over No. If, for each
positive i, the expectation of S; converges to a positive constant as J — oo, or

lim JP(F; =1i)=¢;, i€N, (15)
J—o00
where ¢; > 0, the limiting distribution of S; as J — oo is independently Po(c;).

An infinite series of size indices that are subject to independent Poisson distributions is called
composed Poisson distributions; see Johnson et al. (1997, p.188). When S; is subject to Po(c;),
the probability generating function (pgf) of the number of individuals from cells of size i equals

= exp(ci(z' — 1)).

i 2™ exp(—c;)
x!
=0
Therefore, the pgf of N under composed Poisson distributions is expressed as
o
Ge(z) = Hexp(ci(zi —1)).

i=1

If 72, ¢; = C' < 00, we can rewrite G.(z) as

Ge(z) = exp(C(g(z) — 1)),

where
o
Ci i

9(z) = o
1=1

Let ¢;/C be denoted by g;. Because g; is positive and "2, ¢; = 1, we can regard g(z) as a pgf.
The distribution defined by this G.(z) is called a generalized Poisson distribution, where g(z)
defines its generalizing distribution. Obviously,

1=1 =1

The next question is to determine the distribution of F that satisfies the condition (15) of
Lemma 1, given {¢;|i € N}; the ENB model arises when ¢; = 7(i;,6). As a matter of course,
such a distribution can not be unique. Later two distributions are shown to share the same
limiting distribution, for example.

In order to determine the distribution of F; uniquely, one may restrict the model such that
the distribution of N does not change for all .J, by which the distribution of N remains unchanged
after the limiting argument (8) and then E(N) is restricted to Ny. This is possible by letting
the pgf of I} be

C
Gr(2) = exp(5 (9() — 1),
which is again a generalized Poisson distribution. In this case, the pgf of V can be written as
Go(2) = Gp(z)’ (16)

for all J, with the result that the distribution of N is infinitely divisible. Conversely, any
infinitely divisible distribution over nonnegative integers is a generalized Poisson distribution by
Lévy’s Theorem; see Section 12.3 of Feller (1957). It implies the following fact.



Remark 1 Suppose that Fj,j € N(J), are independently and identically subject to a proper
distribution over monnegative integers. Then the distribution of N remains unchanged for all
positive J, only if F;’s are subject to a generalized Poisson distribution.

It is thus important to elucidate the property of a model that consists of independent and
identical generalized Poisson distributions. In fact, to any model of this type, the limiting
argument (8) can apply.

Theorem 1 Suppose that each Fj,j € N(J), is independently and identically subject to the
distribution that has the pgf:

G(z) = exp(a(g(z) = 1)), 0<a< oo, (17)
where

e .
9(z) =) @iz’
i=1

is the pgf of a proper distribution over positive integers. Let Ja = p be fized. The limiting
distribution of S;,i € N, as J — oo (a — 0) is independently Po(q;u).

The negative binomial distribution (4) is infinitely divisible with a = —vlog(1 — ) and
g(z) =log(1 — 0z)/log(1 — @), which defines the logarithmic series distribution:
I
G =~ —
log(1 —0) i

Thus, by letting p equal the right hand side of (7) times — log(1 — ), we obtain the logarithmic
series model (9) as v — 0. Willmot (1986) noted that the IGP distribution is also infinitely
divisible; let @ = a(1 — v/1 —0) and g(z) = (1 — V1 — 20)/(1 — v/1 — 0), which is the pgf of the
truncated ENB distribution with v = —1/2:

o 1 07 (2i — 3)!!
T T Ao 2ul

Then, if g = 2Ny(1 — /1 —60)v/1 —0/0, the limiting distribution is (12) as @ — 0. See Section
8.3 of Johnson et al. (1993) for other infinite divisible distributions.

To prove Theorem 1, the author referred to Kemp (1978), where it is shown that g(z) of G.(2)
defines the limiting distribution of the truncated distribution of G.(z) as C' — 0. For instance,
the logarithmic series distribution is the limit of the truncated negative binomial distribution.
The limiting distribution of the truncated IGP distribution as a — 0 is the ENB distribution
(11) with v = —1/2.

Next we consider conditioning the population model that consists of independent generalized
Poisson distributions on N. Sibuya et al. (1964) pointed out that the conditional distribution
of the negative binomial model (5) given N is the Dirichlet-multinomial mixture or the nega-
tive multivariate hypergeometric distribution proposed by Mosimann (1962). Hoshino (2003)
discussed the property of the conditional IGP population model given N (CIGP distribution).
According to Watterson (1974), the conditional distribution of the logarithmic series model on
N is the Ewens distribution (Ewens (1972)); see Hoshino and Takemura (1998) also. The con-
ditional distribution of ENB(—1/2) or the limiting CIGP distribution was derived in Hoshino




(2002), where these relationships were illustrated. This type of conditioning is of importance
because fixed N is more realistic than to fix E(N) in application fields where a sampling frame
is definite.

As for models in a broad class, the conditioning has another advantage. Let us write

— n(9)
where -
n(0) =Y a:h(0)', a; >0, h(0) >0
=1

The distribution defined by the pgf (18) is called a Modified Power Series (MPS) distribution
(Gupta (1974)). 1f h(6) = 0, which is the case of the negative binomial distribution and the IGP
distribution, (18) reduces to that of a power series distribution (Noack (1955)); see Johnson et
al. (1993, p.70). The following theorem states that the power parameter 6 does not affect the
conditional model of the Poisson distribution generalized by an MPS distribution given its total
frequency. In other words, N is a sufficient statistic for 6; see Johnson et al. (1993, p.73). After
conditioning on NN, parameter estimation should become easier.

Theorem 2 Suppose that each Fj,j € N(J), is independently and identically subject to the
distribution that has the pgf:

G(z) = exp(an(0)(g(z) — 1)), 0<a <o,
where 1(0) and g(z) are defined by (18). Then G(z) also defines the MPS distribution:

, bih(0)’
P(F;=i)= ———————, 19
R ) )
where by = 1 and b1 = a(i + 1)1 Zj‘:o (i+1—j)ait1-4bj.
The conditional model given N = ijl F; is expressed as

J
P(FlzglaFQ:.923"'3FJ:gJ|N:n):Hbgj/dTw
j=1
or
P(S) =1, SumtN=m= " T[Y =y (20)
1=1t1,5 =t2,..., 5, =ty|N =n) = —— , v= ti,
(J — U)‘dn i ti! i1

where dy = 1 and di11 = Jo(i+ 1)1 Z;:O(i +1—j)ait1—;d;.
When Ja is fized at p, the limiting distribution of (20) as J — oo is

a;
P(Sl:tl’SQ:tQ?"'?S’n:tn|N:n):d— tZ"
0 -

’u’U n t;

=1



Now, ENB(~) is derived based on Theorem 1. The ENB distribution (11) has the following

pet 1 (1 20)
9 =TT =g

by which we obtain a generalized Poisson distribution defined by this pgf:
G(z) = exp(ef(1 = 0)77 — (1 - 20)77}), (21)

where 0 < a,0 < § < 1 and —1 < v < 0. Actually, v can be positive, and (21) reduces to
that of the Poisson distribution when v = —1. However, the present article only considers the
aforementioned parameter space. Let the distribution of F}, j € N(J), be defined by (21). Then

E(Fj) = —ay0(1-0)77", jeN(J),
and the relationship that E(N) = Ny is equivalent to the restriction:

No(1 — @)t

Joa = —
o 0

(22)
When a = a(1 — (1 — 0)"7) and p equals the right hand side of (22), Theorem 1 produces
ENB(v). In summary, the following result holds.

Proposition 1 Suppose that F},j € N(J), is independently subject to the identical distribution
that has the pgf (21). Let E(N) be fired at Ny. The limiting distribution of (S1,Se,...) as
J — oo (o — 0) is then ENB(vy).

The distribution (21) is called Poisson-Pascal and reviewed by Johnson et al. (1993, p.382), in
which the case of positive « is solely considered, though. It was Willmot (1989) who pointed out
that negative 7 larger than -1 is valid. If we allow the first moment of the Poisson-Pascal distri-
bution to be infinite, # can be unity, where (21) reduces to that of the discrete stable distribution
(Steutel and van Harn (1979)) and the ENB distribution (11) reduces to the Sibuya distribution
(Sibuya (1979)). It is observable that the ENB distribution is a power-series-distributionized
Sibuya distribution and the Poisson-Pascal distribution is a power-series-distributionized dis-
crete stable distribution.

The probability function of the Poisson-Pascal distribution is generally complicated. How-
ever, because the ENB distribution (11) belongs to the class of MPS distributions, Theorem 2
assures us of the following result.

Proposition 2 Suppose that F;, j € N(J), is independently subject to the identical distribution
that has the pgf (21). Then

D(i;a,7)0"

P =0 = el — - o))

i € Ny, (23)

where D(0;a,y) =1 and
a Zi:—yf(i—l—l—j—l-’y)

P12 TG )

D@+ La,v) = D(j; ). (24)



The conditional model given N = Z}]:l F} is expressed as

J
P(Fi =g1,Fy = g3,....,Fy = gj|N =n) = DnJM 711 Pgjion)
j=1

or

J! & D(i;a, )b
P(S1 =t1,5 =ta,..., S, =t,|N =n) = , 25
( 1 1,02 25 ) | n) D(n,Joz,’y)(J — U)' H ’ ( )
where v =" 7", t;.
The limiting distribution of (25) as J — oo when Ja = p is

n

—p Y1 Z+7) “1

=1

When p equals the right hand side of (22), equation (26) is the conditional distribution of ENB(7y)
given N.

We may recall that (21) reduces to that of the IGP distribution when v = —1/2. Hence
(25) reduces to the CIGP distribution when v = —1/2, and (26) reduces to the limiting CIGP
distribution. When v — 0, (26) corresponds to the Ewens distribution. These special cases are
very simple.

Remark 2 The distribution (26) belongs to an exponential family, when v is fized and p is seen
as the unique parameter. Then U is its sufficient statistic, as the Ewens distribution (y = 0)
and the limiting CIGP distribution (y = —1/2).

Let us investigate the number D(i; «v,y) defined by the recursion (24). Its generating function
appears to be
f(zr0,7) = expla(l — (1 -2)77))
because of (23). Charalambides and Singh (1988, eq. 3.19) evaluated it as

fza.7) ZZC”, —a) (—2)it (27)

il’
i=0 j=1 ’

where C(i, j,—7) is the C-number, which is a generalized Stirling number; see Charalambides
and Singh (1988) for its detailed review. In the domain of —1 < v < 0, the expression of the
C-number is not simple except for the case of v = —1/2. Because equation (27) implies that

1
D(i;a,7) E oﬂ ’+JCZJ, ’y),',
il

it is unlikely that D(i; «,y) can be generally expressed in a simple form.
Professor H. Yamato suggested the following evaluation of the distribution of U under (26).
See Hoshino (2002) for its simple case of v = —1/2. Let us rewrite the right hand side of (26) as

. t; n ;
(=) )@+t - i
D(n; 1, 7) H il 5 D) I:I i) ot (28)

=1



where (1 +~)=1 =T(i ++)/I(1 +5). Charalambides and Singh (1988, eq. 3.24) showed

n t
—\" 1
_ — ! —
coo-n- S WI(]) o (29)
ti+to+-Ftn=v i=1
where the summation is taken over all partitions of n into v parts under > it; = n. Consequently,

PU = o[N =n) = —F_(p)ne

1
C n,v,—=7v),
D(n; p,y) ( )

n!
assuming (26).

The above derivation follows Yamato et al. (2001), who evaluated the distribution of U under
a generalized Ewens distribution called Pitman’s sampling formula. Pitman (1995) defined it as

. t;
0w Lo | (14 )l ‘1
— = = = | -
P(Sl tl,...,Sn tn‘N n) n: a[n] { il ti!,

=1

where v = 37| t; and 0" = 0(§ —7)--- (§ — (v — 1)7). The parameter space of —1 <y < 0
is valid for 0 > ~, and U is sufficient for 6 because
n!

n t;
_ t ]
P(Sl :tl,SQ:tg,...,Sn:tn|U:’U,N:n):m < z’}/> ; (30)
) Uy -1 1°

2

under Pitman’s sampling formula. The following fact has been obvious.

Remark 3 The conditional distribution of (26) given U and N is the same as (30) of Pitman’s
sampling formula.

The restriction (16) was expedient to determine the distribution of Fj uniquely. Removing
this restriction allows us to show that another model converges in distribution to ENB(y) by
the limiting argument (8). Sichel (1971) proposed the Generalized IGP (GIGP) distribution or
Sichel distribution:

(1—0)(ab/2)¥
K, (av1—0)y!
which equals the IGP distribution (14) when v = —1/2. The limiting distribution of (31)
as a — 0 is the negative binomial distribution when ~ is positive. Sichel (1992) showed for

—1 < v < 0 that the limiting distribution of the truncated GIGP distribution as o — 0 is the
ENB distribution. As regards the GIGP model:

P(F=y) =

Kyiy(a), y€Np0<0<1,0<a, (31)

J )

(1—0)"%(a0/2)%
PFh=q,Fs=¢2,...,F5=¢g :” (), 32
( 1 1,142 2 J J) b Kv(am)gj! 9J+’Y( ) ( )

the limiting distribution as @« — 0(y > 0) is the negative binomial model, which becomes
the logarithmic series model by the limiting argument (8). We are interested in the case of
—1 <7 <0 on (32), which becomes ENB(~).

Theorem 3 If —1 < v < 0, under the restriction that E(N) = Ny, the limiting distribution of
size indices of (32) is ENB(v) as J — oo and o — 0.

The relationships shown in this section are summarized in Figure 1.

10
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Figure 1: Models relating to ENB(7)

3 Applying the ENB model

3.1 Parameter estimation

This section discusses the Maximum Likelihood (ML) estimation of ENB(y). For i = 1,2,...,
an observed size index S; is denoted by ¢;, and v =Y ;2 t;,n =Y .0, it;.
The log likelihood is expressed as

L = —N(1—9)7+1w+(n—v)1o 0 +v(y+1)log(1 —0)
0 o g0+ v(y 0g

+Zti(log (i +7) —logT(1+ 7)) + const.

i=1

The first derivatives are

OL Ny, (1—=0)"—1 (1+~)(1-0) 1 (y+1)
F— 62 * )+ n=vg—vg—g
oL 1-60 Ny, (1-6) (1 -—g)y*t
9y _ -7 20 log(1 —
5 g t g Tt og(1-0))
o] i—1 1
+vlog(l —0) + t; —
(1-0) Z:; 2555

The ML estimators are the solution of these simultaneous equations: dL/9y = dL/90 = 0. For
its numerical evaluation, the Newton-Raphson method is available. The second derivatives are
provided below.

L No((1—0)y*t—1) Ny 1
NO ~ NO v N() v
0 g~ - —0) — 201 — )" log(1 — ) — :
(1= 0 = ZL(1 = 0)log(1 = 0) = 21— 0 log(1 =) — 7

11



02L No,2=21=00*" 20 +7)(1=0) (L+y)y1-0)"

062 _7( 63 62 6 )
N—-v v(y+1)
2 (1-0)2
L _ &(72(179)+2(170)7+1—10g(1—0)2( 70)7+1—{—log( 9)(179)%1)
0y? 0 73 72 g
00 i—1
-3
i=2 =1 j+7

In practice, the realized value of N (denoted by n) usually equals Ny. Then the likelihood
equations reduce to the following:

oL _ No(1=(1=-6)")(1-0)
and
oL No(1—6) 1—(1—-6) B =
_87_0@ o7 { 5 + log(1 }—5—; tzE 7+] (34)

where the derivation of (34) depends on (33). It is easy to show that the first term of the left
hand side of (34) is negative and the second term is positive, when —1 < v (£ 0) and 0 < 6 < 1.
Namely,

No(ie— 9){1 md Gl LN log(1 —0)} < 0 (35)
and
00 i—1 1
i=2 =1

The left hand side of (35) decreases as v decreases. These facts suggest that the ENB model
(v < 0) fits better than the NB model (v > 0) when small cells are dominant, i.e., the left hand
side of (36) is large.

3.2 An application result

This section provides an example of fitting the ENB model. We will compare a fit of ENB(v)
by the ML estimation with a fit obtained by Engen (1974), who adopted pseudo estimation
methods.

Table 1 shows the result of fitting the ENB model to insect data from Mehninick (1964).
The total number of insects, Ny, was 2220. The columns titled “s” correspond to the frequency
of insects of the same species, and “S;” is the observed number of species of frequency i. We
omit data of frequencies larger than 30 from Table 1; other observations were at 31, 36(2), 39,
48, 73, 76, 93, 120, 148, 201, 283 and 592. The columns titled “Engen” show a fit by Engen’s
pseudo moment method, which essentially uses the truncated negative binomial distribution.
The parameter estimates by the pseudo moment method were 4, = —0.366, ép = 0.997; see
Engen (1974) for more detail. The ML estimates of ENB(7y) are 4, = —0.392, 0,, = 0.998,

12



| @ | Si|Engen | MLE | ¢ [ S; | Engen [ MLE || i [S; [ Engen | MLE |
1[50 51.02 [5331[11] 0| 1.36 | 129 [21| 0 [ 054 | 0.51
2 (20| 1614 | 16.17 | 12 [ 0 | 120 | 114 22| 0 | 0.51 | 0.47
3011 877 | 865 || 13| 0 | 1.07 | 1.02 || 23| 1 | 048 | 0.44
416 | 577 | 563 | 14| 1 | 097 | 091 |[24| 0 | 045 | 0.42
55| 418 | 405 |15 0| 088 | 0.83 |25| 0 | 042 | 0.39
6 | 3| 322 | 311 |16] 1| 080 | 0.75 || 26| 0 | 0.40 | 0.37
7| 2| 258 | 248 |17 0 | 0.73 | 0.69 || 27 | 0 | 0.38 | 0.35
8 2] 214 | 205 |18 2| 068 | 063 | 28| 1| 036 | 0.33
9 2] 181 | 173 |19 0| 063 | 059 |[29| 1 | 0.34 | 0.32
10 1| 1.56 | 148 |20 | 1 | 0.58 | 0.54 |30 1 | 0.32 | 0.30

Table 1: Fits of the ENB model to insect data from Mehninick (1964)

which result in the fit shown in the columns “MLE”. The ML estimation allocates slightly more
proportion to small groups in this example than the pseudo moment method, but both fits seem
reasonable.

Fitting ENB(v) by the ML estimation does work. Engen had to rely on pseudo methods
since the distribution of size indices was unknown. Because even the pseudo moment method
requires numerical iteration, there is seemingly no reason to use pseudo methods now.

4 Concluding remarks

In diverse application fields, negative binomial distributions are often used for describing count
data. However, the negative binomial distribution can hardly describe the data of many small
groups, for which we could improve a fit by introducing ENB(7).

The major way for describing counts has been to employ a truncated distribution or P(F}|F; >
1). Such a distribution is over positive integers, and this may remind us that generalizing dis-
tributions, denoted by g(z), are also over positive integers. For instance, the ENB distribution
is a truncated distribution and can be a generalizing distribution, from which the ENB model is
produced. Then it is natural to ask the difference between the ENB distribution and the ENB
model, or more generally, the difference between the direct use of a truncated distribution and
its use as a generalizing distribution to generate the limiting distributions of size indices.

The difference is whether U is fixed or random: In the direct modeling, U has to be fixed
at the observed number of nonempty cells; on the contrary U is a random variable when size
indices are independently Poisson distributed. To illustrate, for fixed v, suppose that F},j =
1,2,...,v, are independently and identically subject to the ENB distribution (11). Then the
joint distribution of these F};’s coincides with the conditional ENB model given U = v. Assuming
the distribution of U enables us to estimate the increase of nonempty cells as the total number
of individuals (N) grows. The practical importance of this advantage is apparent when we see
the vast researches on this type of estimation surveyed by Bunge and Fitzpatrick (1993). By
applying the limiting argument (8) to generalized Poisson distributions, U becomes Poisson
distributed, whereby the total number of species in a population can be estimated for example.
More detailed discussion on this issue will be held in the author’s subsequent paper.
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A generalized Poisson distribution is suitable to describe skew data that are observed in
many cases; see Zipf (1949) or Mandelbrot (1983) for this empirical fact. There are ample
reasons why we have shown some general properties of this class of distributions.
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Appendix

The following notation is used henceforth:

F=(F,F,...,F5)eNy/, 8=(51,5,...) € Ng™,

S(m) = (Sl,SQ,...,Sm) € Nom,m € N.

A The infinite-dimensional multinomial distribution

The infinite-dimensional multinomial distribution has only finite sources of variation. We con-
struct the joint distribution of an infinite series of size indices from the distribution of finite-
dimensional F'.

Let us consider ¢ : Ny’ — No™, where

I(F; =2),
1 J

I(F; = 3),- ).

J
= 1

J
S(F) = (Y _I(F; =1),
=1 j =
This function ¢ assigns to each frequency vector its size indices. Hence for a proper probability
mass function P,
1= ) PFE)= ) > P(F). (37)
FeNy’ SeNo™ Fe{F|¢(F)=S}
It may be worthwhile to point out that

{¢(F)|F € Ng’} C Ng*™

and P(0) = 0. We write

PiS)= Y P
Fe(F|4(F)=S}

which is nonnegative for all S € Ny*. Note that P(S) is the sum of finite number of probabilities.
Because (37) shows
L= > PS),

SeNy™
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we can regard P as the definition of the joint probability of an infinite series of size indices
when the distribution of F' is proper. This construction is valid for all J. In particular, the
distribution of F' is proper when Fj,j € N(J), is independently and identically subject to a
distribution over Ny. Then the distribution of S is proper and formally specified as follows.
The restricted size indices S(m) are subject to the m+1 dimensional multinomial distribution
Pm defined by the pgf:
m
G(z1,20,- . 2m) ={)_(zi — DP(Fy = i) + 1}/, (38)
i=1
which converges for |z;| < 1. Then the sequence {pn,}°_; determines the distribution of S
uniquely; see Corollary 2.20 of Breiman (1968). Let A,, = {S|S(m) = (t1,t2,...,t)}. Since
A,, are decreasing,
lim P(4,,) =P(lim A,,),
m—0oo

m—00

where P(A,,) is measured by p,,. We can thus write the probability mass function of S as (3).

B Proofs
Proof of Theorem 1 Given (38), the pgf of S(m) under the assumption is expressed as
m ) 1
Glz1,22,0 2m) = (14 S Z;(zi — DP(F =1d)-)”. (39)
In fact it is true that P(F —
lim PR =9 _ g, ieN. (40)
a— a

If (40) holds then the pgf converges as J — oo when p < oo and |z;| < 1:

}E’I%G(Zla 22y - azm) = eXp(;(zi - 1)Q7Au) (41)

The right hand side of (41) implies that each S; is independently subject to Po(g;u). The limiting
joint distribution is proper because the right hand side of (41) equals one when z; = 1 for all 7.
The above argument holds for all m, and thus the limiting distribution of S is determined by
the sequence of the joint distribution of m independent Poisson variables as m — oo. Note that
(40) is equivalent to the condition (15) of Lemma 1 when ¢; = ¢;u. Consequently, it suffices to
prove (40).

We now show

oo . o0
, P(F, =1) ,
1 L N g = 42
) = 2 = o), 2
1= 1=

which implies (40). Because G(z) = Y22, 2'P(Fy = 1), the left hand side of (42) equals
lim,—,o(G(z) — G(0))/a, which amounts to

1 exp(alg(2) ~ 1)) — expla(~1))

a—0 a
= lim(g(z) —1)exp(a(g(z) — 1)) + exp(—a)
= 9(2)
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by 'Hopital’s rule. Q.E.D.

The proof of Theorem 2 requires the following lemma shown by Khatri and Patel (1961).

Lemma 2 Suppose that a random wvariable F' is subject to the generalized Poisson distribution

defined by (17). Then

(+DP(F=i+1)=a) (i+1—j)ga_PF =j).
§=0

Proof of Theorem 2 First we show, by induction, that the assumed distribution of Fj
belongs to the class of MPS distributions. We assume (19), which is true when i = 0 because
G(0) = P(F1 = 0) = 1/exp(an(f)) and by = 1. For a generalized Poisson distribution, we can
use the recurrence formula stated in Lemma 2. Therefore,

: Wit h(Q)iF1d
(t+1)P(Fy =i+ 1) =an(0) Z(l +1—3) z-l—l—]nhi(eg))

Jj=0

P(Fy = j). (43)

Using (19), we rewrite the right hand side of (43) as

oy @ hOFT b0 ROF G~

20 2 = D atan@) ~ (@) 2 et
Nammely, -
. 1+
PR =4 = Gy

which again satisfies (19). Hence the distribution of F7 belongs to the MPS class.
Let N = Z}‘le F}j. Because the pgf of N is G(2)7,

dh(0)"
P(N=n)=———.
== o Tan@)
Dividing
P(Fy =gy, Fy = Fy=gy N=n)——0" _ Ts —EJ: L (44)
1=091,'2=g2,..., L' =4y, - - eXp(JO['I’](O)) = gj» n= jZIgJ?

by P(N = n), we obtain the conditional distribution (20).
A referee suggested to rewrite the right hand side of (20) as

v—1

1 - 1
- Jb)i(1— =) (1 — .
T L =) =)

Then, because (40) implies that Jb; — a;u as J — oo, the last result of the theorem obviously
holds. The author originally obtained the limiting distribution by conditioning the joint distri-
bution of infinite Poisson variables. Q.E.D.
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Proof of Theorem 3 We first consider the limiting of & — 0. Jorgensen (1982, p.171)
stated that for v > 0
QK. (a) — D(v)2771 (45)

as @ — 0. Because, as seen in Jorgensen (1982, p.170) for instance,
Ky(a) = K 5(a)

we obtain

a Ky (a) = D(=y)2777! (46)

as a — 0 when v < 0.
According to Sichel (1974), E(N) = N, is equivalent to

af K7+1(O{V 1-— 9)

No=J 47

T 9/T=0 K (aVI-0) (47)
under (32). Since —1 < v < 0, the restriction (47) becomes
2 JOT (v + 1)

No = (2)2Y 48

Y I )

as o — 0 by (45) and (46). The right hand side of (48) is constant if and only if Ja=27 is fixed
as a — 0 and J — oo. Therefore we consider the limiting argument of

Joa~™ =y fixed, as.J — ooand a —0 (49)

for —1 < v < 0, where
_ NL(=y)(@ = 0)7*
2200 (y+ 1)

By Lemma 1, it suffices to show under (49) that

, 0+ y)2» .
Jh—>noloJP(F =1i) = W7 (50)
where P(F' = i) is given in (31); see the proof of Theorem 1. We can easily show (50) for
—1 <~ <0, considering (45) and (46). Q.E.D.
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