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Abstract

Sampling publishes a part of data collected, by which the disclosure of information is limited. For
this purpose, simple random sampling is usually employed. However, it does not satisfy differential
privacy, which is a criterion to bound the accuracy of the estimation of a population. Hence the present
study introduces a dummy to privatize random sampling. The same idea is applicable to even cluster
sampling, which more effectively limits the disclosure. To cover various sampling methods, a general
framework of differentially private sampling is constructed, based on the theory of the Bell polynomial
distribution. An instance called quasi-multinomial sampling is shown to require less dummies, which
do not grow as a sample size diverges. Therefore, it is suitable for publishing microdata of a large
size with less distortion.

Keywords: Confidentiality, Histogram publishing, Overdispersed multinomial, Synthetic data

1 Introduction

A statistical agency publishes data of individuals, i.e., microdata, under the pledge of confidentiality.
Sampling, sometimes called subsampling or resampling, aims to achieve this goal by publishing data of
selected survey respondents, which are usually a part of the whole of survey respondents.

Sampling introduces uncertainty on the presence of an individual in a published data set, even if the
individual is known to have been surveyed. The presence is regarded as a prerequisite of the identification
of an individual; see Marsh et al. (1991). Hence sampling prevents definite identification. However,
plausible identification may still be possible.

In the literature of statistical disclosure control or limitation, this plausibility is quantified as the
accuracy of the estimation of population uniqueness, i.e., non-existence of another individual of the same
attributes as that of a published record. Examples vary from initial Bethlehem et al. (1990) to highly
computational Rocher et al. (2019), but most assume random sampling since deterministic sampling lacks
a general assessment tool of disclosure. Commonly, simple random sampling with or without replacement
is utilized to simplify the assessment.

However, under these simple sampling designs, the information of samples grows proportionally to a
sample size, up to a finite population correction factor. Hence these designs are fundamentally unsuitable
for publishing big data where confidentiality is of primary concern.

Among non-simple random sampling, cluster sampling can lower the accuracy of population estima-
tion. Assuming that individuals of the same attributes belong to the same cell, allocating samples to
fewer cells increases variances between cells, since variances within each cell are zero. Therefore, cluster
sampling can reduce the information of samples, which is advantageous to limit disclosure.

Nevertheless, the performance of cluster sampling depends on the method of clustering. Because much
generality exists in the method, we are not very aware of the advantage of cluster sampling. We need a
framework of cluster sampling that can be theoretically elucidated.
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Hoshino (2021) proposes a family of generalized multinomial distributions, which generalizes simple
random sampling with replacement to include cluster sampling. This family is called the Bell polynomial
distribution (BPD), and known distributions such as the Dirichlet-multinomial mixture, i.e., negative hy-
pergeometric distribution (Cheng Ping, 1964), are included. The Dirichlet-multinomial mixture demon-
strates that the properties of the BPD are well parameterized. Therefore, the current study investigates
the BPD as a tool for statistical disclosure control.

It is important that random sampling is an instance of random masking that can be assessed with
differential privacy (Dwork et al., 2006b). Differential privacy is often interpreted as a criterion to bound
the certainty of the presence of an individual in a published data set, which should motivate us to evaluate
the BPD with differential privacy.

Indeed, we show that any BPD can be differentially private in the sense of Machanavajjhala et al.
(2008). For example, they show that the Dirichlet-multinomial mixture can be differentially private. It
implies that the accuracy of the estimation of a population frequency is controlled by a privacy budget
ϵ of differential privacy. More precisely, the lower bound of the variance of the unbiased estimator of a
population frequency is (exp(ϵ)− 1)−2; see Hoshino (2020, Theorem 2).

The Dirichlet-multinomial mixture, however, does not generate analytically useful data under a mod-
erate privacy budget. Especially, the Dirichlet-multinomial mixture requires distortion proportional to
the size of a published file, by which publishing big data is impractical. Hence Machanavajjhala et al.
(2008) abandon the original differentialy privacy, and they allow “small” violation. Similarly, the U.S.
census bureau employs approximate differential privacy (Dwork et al., 2006a), which also allows “small”
violation, to publish useful 2020 census data. These examples suggest that the original differential privacy
is hard to achieve in practice, where users of data do not accept much distortion.

Even under the original differential privacy, an instance of the BPD requires less distortion. We
show that distortion necessary for sampling with the quasi-multinomial distribution (type 2) (Consul and
Mittal, 1977) converges to a constant as the size of a published file grows when ϵ > 1. Therefore, the
quasi-multinomial distribution (type 2) is far less perturvative than the Dirichlet-multinomial distribution.
In addition, moment formulae (Hoshino, 2021) and a sampling algorithm (Hu and Hoshino, 2018) are
available for the quasi-multinomial distribution (type 2). It should be promising for publishing a large
data set.

The remaining part of the present article is organized as follows. Section 2 consists of two subsections,
where notation to use differential privacy and the Bell polynomial is prepared. Section 3 constructs the
theory of differentially private sampling. The first subsection privatizes simple random sampling, where
dummies are added to attain differential privacy. The second subsection employs the same idea, by which
sampling with the general Bell polynomial distribution is privatized. Section 4 introduces sampling with
the quasi-multinomial distribution as an instance of sampling with the Bell polynomial distribution. The
superiority of the quasi-multinomial sampling is demonstrated both theoretically and empirically. Section
5 concludes with some discussion on the discrete Laplace distribution. All the proofs of theorems are
collected in Appendix.

2 Preliminaries

Throughout the present article, we denote the set of positive integers and the set of nonnegative integers
by N and N0, respectively. The set of integers is denoted by Z. The set of positive real numbers is
denoted by R+ . Similarly, R− denotes the set of negative real numbers, and R denotes the set of real
numbers. Also, R0+ := {0} ∪ R+ , and R0− := {0} ∪ R− .

2.1 Differential privacy

As stated in Section 1, we employ the differential privacy of Machanavajjhala et al. (2008). This subsection
defines it together with notation and motivation.
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If the coding of attributes is common for all individuals, then a microdata set is equivalent to the
frequencies of cells, where each cell corresponds to a unique combination of the values of attributes. For
example, suppose that individuals are classified with respect to Sex and Height, where the coding of Sex is
binary as F or M and the coding of Height is binary as T or S. Then there are four cells, each of which is
designated by one of {F,M}×{T, S}. The set of frequencies (1, 1, 0, 0) of the cells of (FT, FS,MT,MS)
is equivalent to a microdata set of {{Sex = F,Height = T}, {Sex = F,Height = S}}.

Therefore, we consider protecting the frequency vector of a population by publishing a frequency
vector of samples as a sanitized data set. This situation looks similar to histogram publishing, but
random sampling differs in that sample frequencies are always nonnetative integers and sum up to a fixed
constant.

Let us denote the frequency vector of a population by n⃗ = (n1, n2, . . . , nJ), where J denotes the

number of cells. We denote the size of a population by n =
∑J

j=1 nj . We publish m⃗ = (m1,m2, . . . ,mJ),

where mj denotes the sample frequency of the jth cell. Correspondingly, m =
∑J

j=1 mj denotes the size
of a published file.

The space of a frequency vector of distributing n individuals over J cells is denoted by

Fn,J := {fJ |fj ∈ N0, j ∈ [J ],

J∑
j=1

fj = n}.

The size of a population, n, is fixed under sampling from a finite population. This situation is
different from standard differential privacy that conceals the addition or deletion of one individual. It is
more natural to conceal the move of one individual to a different cell, as originally considered by Dwork
et al. (2006b).

Let n⃗′ = (n′
1, n

′
2, . . . , n

′
J) denote the result of moving one individual of n⃗ to a different cell. When

one individual of the kth cell moves to the jth cell, j ̸= k, it results in that n′
j = nj + 1, n′

k = nk − 1.
Specifically, we adopt differential privacy defined below.

Definition 1 (Machanavajjhala et al., 2008) Let (m,n, J) ∈ N3 and ϵ ∈ R+ . A random mask that
generates m⃗ is ϵ-differentially private (ϵ-DP) if and only if for all (m⃗, n⃗, n⃗′) ∈ Fm,J ×Fn,J ×Fn,J ,

P(m⃗; n⃗)/P(m⃗; n⃗′) ≤ exp(ϵ). (1)

2.2 Bell polynomials

The current study considers random sampling induced by the Bell polynomial distribution (Hoshino,
2021). This family of distributions is named after the Bell polynomials (Comtet, 1974), which appear in
the probility mass function. For a reader who is unfamiliar with the Bell polynomial, we review it in this
subsection.

For an infinite sequence of real numbers w := (w1, w2, . . .), n ∈ N and k ∈ [n] := {1, 2, . . . , n}, the
partial Bell polynomial is defined as

Bn,k(w) := n!
∑

s∈Pn,k

n∏
i=1

(wi

i!

)si 1

si!
,

where

Pn,k := {(s1, . . . , sn) : si ∈ N0, i ∈ N,
n∑

i=1

isi = n,

n∑
i=1

si = k}.

Considering this definition, Bn,1(w) = wn, and Bn,n(w) = w1
n.

The (total) Bell polynomial Bn(w) is defined as the sum of partial Bell polynomials over k. Namely,

Bn(w) := n!
∑
s∈Pn

n∏
i=1

(wi

i!

)si 1

si!
,
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where
Pn := ∪n

k=1Pn,k.

It is important that B0(w) = B0,0(w) ≡ 1 for all w; see, e.g., Riordan (1958). It has to be Bn,0(w) = 0
for n ∈ N.

We extensively use the following expression:

Bn(λ,w) :=

n∑
k=1

λkBn,k(w). (2)

According to, e.g., Charalambides (2002, eq. 11.15),

Bn(λ,w) = Bn(λw1, λw2, . . . , λwn).

For computation, the following recurrence formula is convenient.

Bn(λ,w) =

n−1∑
i=0

(
n− 1

i

)
Bi(λ,w)λwn−i;

see, e.g., Charalambides (2002, eq. 11.10).

3 Theory of Differentially Private Sampling

3.1 Simple random sampling

We begin with considering simple random sampling without replacement or the hypergeometric distribu-
tion. This random mask is defined by

P(m⃗; n⃗) =

(
n1

m1

)(
n2

m2

)
· · ·

(
nJ

mJ

)
/

(
n

m

)
. (3)

Simple random sampling without replacement (3) can not be ϵ-DP because P(m⃗; n⃗)/P(m⃗; n⃗′) is not

finite when P(m⃗; n⃗′) = 0. For example, let nk = 1. Moving one individual of the corresponding population

from the kth cell to the jth cell results in n′
k = 0. Then P(m⃗; n⃗′) = 0 when mk ≥ 1.

Generally, any random sampling is not ϵ-DP when the support of m⃗ depends on n⃗; see Hoshino
(2020, Remark 1). To eliminate this dependence under simple random sampling without replacement,
we may add γj dummy individuals to the jth cell of the population, where γj ≥ m, j ∈ [J ]. Write
γ⃗ = (γ1, γ2, . . . , γJ). Then

P(m⃗; n⃗, γ⃗) =

(
n1 + γ1
m1

)(
n2 + γ2
m2

)
· · ·

(
nJ + γJ

mJ

)
/

(
n+ γ·
m

)
, (4)

where γ· :=
∑J

j=1 γj . Sampling by (4) can be ϵ-DP since the support of m⃗ is not restricted by n⃗.
By introducing dummies, samples should consist of both real and imaginary individuals. This mixture

is called hybrid in the literature of synthetic data. As the number of dummies γj increases, samples should
have less information about a population. This intuition is supported by the condition of differential
privacy derived in Theorem 1.

Actually, γj is not necessarily a nonnegative integer. To understand this fact, we rewrite (4) as

P(m⃗; n⃗, γ⃗) =

(
m

m⃗

)
Γ(n−m+ γ· + 1)

Γ(n+ γ· + 1)

J∏
j=1

Γ(nj + γj + 1)

Γ(nj + γj −mj + 1)
. (5)
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Theorem 1 Hypergeometric sampling (4) or (5) is ϵ-DP if and only if

min
j

γj ≥ m− 1 +
m

exp(ϵ)− 1
. (6)

In (6), minj γj has to diverge as ϵ → 0. Also minj γj has to be O(m) as m grows. These facts suggest
that hypergeometric sampling is not very promising unless n ≫ m.

The difficulty of simple random sampling without replacement has been the dependence of the support
of m⃗ on n⃗. Sampling with replacement avoids this dependence mostly, except for empty cells of a
population (structural zeros). To remedy this issue, we again add γj dummies to the jth cell of a
population. Accordingly, simple random sampling with replacement or the multinomial distribution is
defined by

P(m⃗; n⃗, γ⃗) =

(
m

m⃗

) J∏
j=1

(
nj + γj
n+ γ·

)mj

. (7)

We are familiar with the interpretation of (7) that (nj + γj)/(n + γ·) is the probability of the jth
cell to be sampled. This interpretation liberates us from regarding γj as a nonnegative integer. A
dummy is not necessarily an imaginary individual. It is generally a sampling weight to allow unequal
probability sampling. Oversampling and downsampling are often employed in sample surveys of official
statistics, where the inclusion probabilities of microdata should not be neglected. Introduced γj can
describe differences in inclusion probabilities.

Theorem 2 Multinomial sampling (7) is ϵ-DP if and only if

min
j

γj ≥
1

exp(ϵ/m)− 1
. (8)

The right hand side of (8) is approximately m/ϵ. Therefore, necessary dummies are reduced from
hypergeometric sampling, but they are still O(m). The essential reason of dummies to grow is that
multinomial sampling (7) is equivalent to the convolution of m independent samples. In other words, the
Fisher information is proportional to m. We need to consider dependent samples for further reduction of
dummies.

3.2 Sampling with Bell polynomial distributions

Considering simple random sampling in the previous subsection clarifies two facts: (i) Sampling with
replacement reduces necessary dummies. (ii) Unequal probability sampling is beneficial, but insufficient
for reducing dummies. Observing these facts, we should consider cluster sampling with replacement that
allows unequal inclusion probabilities.

Sampling with replacement is equivalent to a distribution over the same support as that of the multi-
nomial distribution. The Bell polynomial distribution (BPD) is a family of such distributions with
parameters to control inclusion probabilities. It also possesses a prameter to increase marginal variances,
which is the effect of clustering. In fact, the BPD is an overdispersed multinomial distribution (Neerchal
and Morel, 2005).

We define BPD sampling below so that samples are subject to the BPD. Hoshino (2021) shows that
if w ∈ R+ × R0+

∞ and nj + γj > 0, j ∈ [J ], then P(m⃗) > 0 for all m⃗ ∈ Fm,J in (9). Hence there is a
chance to be ϵ-DP, for which nj + γj > 0 must hold for any nj . Thus we restrict γj ∈ R+ .

Definition 2 BPD sampling under a dummy vector γ⃗ := (γ1, γ2, . . . , γJ) ∈ R+
J and a characteristic

sequence w ∈ R+ × R0+
∞ is defined by

P(m⃗; n⃗, γ⃗,w) =

(
m

m⃗

)
1

Bm(n+ γ·,w)

J∏
j=1

Bmj
(nj + γj ,w). (9)
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Multinomial sampling is a special case of BPD sampling; putting w1 = 1, wi = 0, i ≥ 2 into (9) results
in (7). Also for any w where (9) depends on n + γ·, BPD sampling (9) converges in distribution to
multinomial sampling as (n+ γ·) → ∞ when (nj + γj)/(n+ γ·) is fixed; see Hoshino (2021).

For convenience, below we cite the moment properties of BPD samples. The mean vector and the
correlation matrix of BPD sampling are the same as those of multinomial sampling, regardless of w.

Proposition 1 (Hoshino, 2021) Suppose that m⃗ is generated by (9). Write πj = (nj + γj)/(n + γ·).
Then for m ≥ 2,

E(mj) = mπj , j ∈ [J ]. (10)

V(mj) = mπj(1− πj)ϕ(m,n+ γ·,w), j ∈ [J ], (11)

where

ϕ(m,n+ γ·,w) = 1 +
(n+ γ·)(m− 1)!

Bm(n+ γ·,w)

m−2∑
i=0

Bi(n+ γ·,w)wm−i

i!(m− i− 2)!
.

Cov(mi,mj) = −mπiπjϕ(m,n+ γ·,w), i ∈ [J ], j ∈ [J ], i ̸= j.

Data users are often interested in the jth cell probability nj/n, and the bias of its usual estimator
mj/m under BPD sampling is

E
(mj

m

)
− nj

n
=

nγj − njγ·
n(n+ γ·)

(12)

from (10). This result provides intuitive understanding of the effect of dummies. If γj is proportional to
nj for all j then mj/m is an unbiased estimator of the jth cell probability. This way generates useful
data, but it is not ϵ-DP since empty cells need positive dummies to exclude the case of P(m⃗) = 0. Also
differential privacy does not seem to suppose dummies depending on nj .

Below we provide a sufficient condition for BPD sampling to be ϵ-DP.

Theorem 3 Any BPD sampling (9) is ϵ-DP if

min
j

γj ≥
1

exp(ϵ/m)− 1
. (13)

The sufficient condition (13) equals to the necessary and sufficient condition (8) of the multinomial
distribution. This result corresponds to the fact that the multinomial distribution has the least vari-
ance among the BPD; it is straightforward to verify that ϕ(m,n + γ·,w) ≥ 1 in (11), and ϕ(m,n +
γ·, (1, 0, 0, . . .)) = 1.

Necessary dummies are at most (13) for BPD sampling. Therefore, hypergeometric sampling does
not belong to BPD sampling because it needs more dummies than multinomial sampling. Selecting
appropriate w results in less dummies for differential privacy.

To simplify the necessary and sufficient condition for BPD sampling to be ϵ-DP, we restrict w so that
the Bell polynomial is monotone in two senses:

W1 :=

{
w : w ∈ R+ × R0+

∞,
Bn+1(λ+ 1,w)

Bn+1(λ,w)
≥ Bn(λ+ 1,w)

Bn(λ,w)
, ∀n ∈ N, ∀λ ∈ R+

}
,

and

W2 :=

{
w : w ∈ R+ × R0+

∞,
d{Bn(λ+ 1,w)/Bn(λ,w)}

dλ
≤ 0, ∀n ∈ N, ∀λ ∈ R+

}
.

Theorem 4 Suppose that w ∈ (W1 ∩W2). Then BPD sampling (9) is ϵ-DP if and only if

Bm(1 + minj γj ,w)

Bm(minj γj ,w)
≤ exp(ϵ). (14)
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For example, let wi = (i − 1)!. Then it is widely known that Bn(λ, (0!, 1!, 2!, . . .)) = λ(λ + 1)(λ +
2) · · · (λ + n − 1); see Pitman (2006, eq. 1.54). Then Bn(1 + λ,w)/Bn(λ,w) = (λ + n)/λ, which is
increasing with respect to n for λ ∈ R+ . Also Bn(1 + λ,w)/Bn(λ,w) = (λ + n)/λ is decreasing with
respect to λ for n ∈ N. Therefore, Theorem 4 reproduces the following known result.

Corollary 1 (Machanavajjhala et al., 2008) Negative hypergeometric sampling defined by

P(m⃗; n⃗, γ⃗) =

(
m

m⃗

)
Γ(n+ γ·)

Γ(n+ γ· +m)

J∏
j=1

Γ(nj + γj +mj)

Γ(nj + γj)
(15)

is ϵ-DP if and only if

min
j

γj ≥
m

exp(ϵ)− 1
. (16)

In (13), minj γj ≈ m/ϵ. Hence necessary dummies for negative hypergeometric sampling are less than
those of multinomial sampling as m → ∞, yet the difference disappears as ϵ → 0. Also the necessary
dummies of negative hypergeometric sampling are still O(m), which is distortive for publishing big data.

We would like to find better w that requires less dummies. The next section presents such an example,
for which we provide a sufficient condition for w to belong to W1.

Theorem 5 Let w ∈ R+ × R0+
∞. If Bn+1,k(w)/Bn,k(w) is nondecreasing with respect to k ∈ [n] for

n ∈ N then w ∈ W1.

Even if the total Bell polynomial is not simple enough to verify the monotone condition of W1, the
partial Bell polynomial can be simple enough. For example, let wi = i. Then Bn,k(1, 2, . . .) =

(
n
k

)
kn−k,

which is called an idempotent number; see Harris and Schoenfeld (1967). The corresponding total Bell
polynomial has not been expressed simpler than the weighted sum of the partial Bell polynomials, but
Bn+1,k(1, 2, . . .)/Bn,k(1, 2, . . .) = (n+ 1)k/(n− k + 1), which is apparently increasing with respect to k.
Hence (1, 2, . . .) ∈ W1.

Hoshino (2021) discusses some properties of the BPD that are useful for drawing samples. For
example, the computer generation of BPD samples enjoys the conditional distribution method (Devroye,
1986), where sequential sampling of each mj is justified. Based on these results, the author recommends
Algorithm 1 to generate BPD samples. Hoshino (2021) also clarifies the stopping time T := min{t :∑t

j=1 mj = m} as P(T ≤ t) = Bm(
∑t

j=1 λj + γj ,w)/Bm(λ· + γ·,w) under Algorithm 1.

Algorithm 1 The following procedure generates m⃗ subject to (9).

1. Order the index of cells so that n1 + γ1 ≥ n2 + γ2 ≥ n3 + γ3 ≥ · · ·.

2. Let m⃗ = (0, 0, . . .) and j = 1.

3. Given (m1,m2, . . . ,mj−1), draw mj subject to the following distribution:

P(mj) =

(
m−

∑j−1
i=1 mi

mj

)Bmj
(nj + γj ,w)Bm−

∑j
i=1 mi

(
∑J

i=j+1 ni + γi,w)

Bm−
∑j−1

i=1 mi
(
∑J

i=j ni + γi,w)
,

where mj = 0, 1, . . . ,m−
∑j−1

i=1 mi.

4. If
∑j

i=1 mi = m then output m⃗ and quit.

5. Increase j by one; go to Step 3.
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Table 1: Minimum γ given (m, ϵ)
ϵ

m 1 2 3 4
100 9.50 .564 .154 .0516

1 000 31.1 .580 .156 .0523
10 000 99.5 .582 .156 .0524
100 000 316 .582 .157 .0524

100 000 000 9999 .582 .157 .0524
1 000 000 000 31574 .582 .157 .0524

∞ ∞ .582 .157 .0524

ϵ
m 1/2 1/3 1/4 1/5 · · · 1/10

100 102 201 301 401 · · · 901
1000 1002 2001 3001 4001 · · · 9001

4 Quasi-multinomial Sampling

In this section, we examine a promising instance of BPD sampling: Quasi-multinomial sampling. Let
wi = ii−1. Then Bn,k(1

0, 21, . . .) =
(
n−1
k−1

)
nn−k, and Bn(λ, (1

0, 21, . . .)) = λ(λ+ n)n−1; see Pitman (2006,
eq. 1.56). The corresponding instance of the BPD is the quasi-multinomial distribution (type 2) proposed
by Consul and Mittal (1977); see also Hoshino (2021).

We can confirm that (10, 21, . . .) ∈ W1 by Theorem 5. Write Bn+1,k(1
0, 21, . . .)/Bn,k(1

0, 21, . . .) =
(n+1)n−k+1/(nn−k−1(n−k+1)) = f(k) > 0. Then f(k+1)/f(k) = (n2−(k−1)n)/(n2−(k−1)n−k) > 1.
Hence f(k) is increasing with respect to k ∈ [n], which suffices.

Also Bn(λ+1, (10, 21, . . .))/Bn(λ, (1
0, 21, . . .)) = (λ+1)/λ{(λ+1+n)/(λ+n)}n−1, which is obviously

decreasing with respect to λ. Consequently, the following result holds as a corollary to Theorem 4.

Corollary 2 Quasi-multinomial sampling defined by

P(m⃗; n⃗, γ⃗) =

(
m

m⃗

)∏J
j=1(nj + γj)(nj + γj +mj)

mj−1

(n+ γ·)(n+ γ· +m)m−1
(17)

is ϵ-DP if and only if (
1 +

1

minj γj

)(
1 +

1

minj γj +m

)m−1

≤ exp(ϵ). (18)

The necessary dummy in (18) is implicit. Hence for some combinations of m and ϵ, the minimum
minj γj is numerically evaluated using Mathematica. Table 1 summarizes the result. These values are
consistent with the following asymptotic formulae. The proof of Theorem 6 is easy and omitted.

Theorem 6 As m → ∞, the equality in (18) holds when

min
j

γj ≈

 1/(exp(ϵ)− 1)− 1, ϵ > 1,√
m, ϵ = 1,

(1/ϵ− 1)m, ϵ < 1.

Theorem 6 shows that minj γj = O(1) when ϵ > 1. Hence quasi-multinomial sampling is very
appropriate for publishing big data under a usual privacy budget.

To demonstrate the superiority of quasi-multinomial sampling, we compare sampling methods under
the same privacy budget: ϵ = 7, which is the choice of Machanavajjhala et al. (2008). Let m = n = J be
one million, and the dummy of each cell is set at the minimum. Assuming that nj is ten thousand, we
evaluate the expectation of mj = n̂j under each sampling. Table 2 exemplifies a small magnitude of bias
by quasi-multinomial sampling.

One should also be concerned about the variance of quasi-multinomial sampling. The variance formula
(11) shows that quasi-multinomial sampling inflates the variance of multinomial sampling by ϕ(m,n +
γ·,w). Hoshino (2021) shows that 1 ≤ ϕ(m,λ,w) < m for λ ∈ R+ . Although exceptions such as

8



Table 2: Bias of Differentially Private Sampling (nj = 10000)

Hypergeometric Multinomial Negative Hypergeometric Quasi-multinomial
Minimum γ 1000912 142857 914 .00248

E(n̂j) 1.01 1.07 11.9 9975.2

Table 3: Variance Inflation by Quasi-multinomial Sampling
Exact: ϕ(1000, Jγ,w)− 1

J
γ 100 1000 10000 100000√
10 15.7 .731 .0642 .00633
10 2.98 .210 .0201 .00200√

1000 .731 .0642 .00633 .000632
100 .210 .0201 .00200 .000200

1000 .0201 .00200 .000200 .0000200

Approximate: 2(1000− 1)/(Jγ)
J

γ 100 1000 10000 100000√
10 6.32 .632 .0632 .00632
10 2.00 .200 .0200 .00200√

1000 .632 .0632 .00632 .000632
100 .200 .0200 .00200 .000200
1000 .0200 .00200 .000200 .0000200

the multinomial distribution exist, ϕ(m,λ,w) = 1 + O(λ−1) as λ → ∞, and ϕ(m,λ,w) = m − O(λ)
as λ → 0, In practice, n + γ· is not close to zero because n is a population size, and γ· = O(J),
where the number of cells J is usually large. Hence we numerically evaluate an asymptotic formula
ϕ(m,λ,w) ≈ 1 + (m− 1)w2/(λw

2
1) as λ → ∞.

Variance formulae (11) specific to quasi-multinomial sampling are provided by Hoshino (2021). How-
ever, those are involved with the factorial of m, which is not convenient for exact computation. Hence
we select rather small m = 1000. The dummy of each cell equals to γ. Then γ· amounts to Jγ, where
J is the number of cells. Typically, n is greater than m, but we know that a large value of n decreases
ϕ(m,n + Jγ,w). Hence we let n = 0. In the case of quasi-multinomial sampling, w1 = 1 and w2 = 2.
Therefore, we compare ϕ(1000, Jγ, (10, 21, . . .))− 1 ≈ 2(m− 1)/(Jγ) with the exact value.

Table 3 exhibits the result. Although tabulated values are supplied for each combination of J and γ,
the same value of Jγ leads to the same result. The approximation seems acceptable when Jγ > 1000.
The case of ϕ(1000, 1000, (10, 21, . . .))

.
= 3.98 is arguable; when a sampling fraction is close to one, the

standard deviation of a sample frequency is almost doubled under few dummies. Increasing dummies can
reduce it, which implies a tradeoff between bias and variance. Nevertheless, to set γj proportional to nj for
positive nj can reduce both bias and variance. Decreasing a sampling fraction also reduces the standard
deviation of a sample frequency. It seems reasonable to accept ϕ(1000, 1000

√
10, (10, 21, . . .))

.
= 1.73 for

a price of differential privacy.
The computer generation of quasi-multinomial samples can employ Algorithm 1. Hu and Hoshino

(2018) describe it specifically to quasi-multinomial sampling, where Step 3 of Algorithm 1 exploits rejec-
tion sampling that proposal obeys the beta-binomial mixture distribution.

5 Concluding Discussion

Let us compare random sampling with the discrete Laplace distribution (Inusah and Kozubowski, 2006),
which is a popular differentially private method used to protect count data. This method publishes
mj = nj + xj , where xj is an independent random noise identically distributed as

P(xj = x; ϵ) =
1− e−ϵ/2

1 + e−ϵ/2
e−ϵ|x|/2, x ∈ Z. (19)

Then puslished m⃗ is ϵ-DP. Also this method publishes unbiased data, i.e., E(mj) = nj , since (19) is an
even function. Inusah and Kozubowski (2006) show that V(xj) = 2e−ϵ/2/(1−e−ϵ/2)2. Table 4 enumerates
the variance and the probability of xj to be negative for some ϵ.

9



Table 4: Discrete Laplace Noise
ϵ 1/2 1 2 3

V(xj) 31.8 7.84 1.84 .739
P(xj < 0) .438 .378 .269 .182

The major disadvantages of adding the discrete Laplace noise are (i) m is random and restricted so
that E(m) = n, and (ii) mj can be negative. First, the randomness of m may not be problematic when
n is unknown and to be protected. However, n is often known in official statistics. For example, the
U.S. census bureau must unprotect the population of a state, n, by law. Second, negative frequencies
are unacceptable in publishing microdata. Hence some post-processing to obliterate negative frequencies
is employed under adding noise. However, post-processing is often a type of deterministic optimization,
which seems too untractable to assure that post-processed data are valid for statistical analyses.

Random sampling is free from these two issues. Obviously, m is deterministic under sampling, where
we do not have to equate m to n. We can even let m > n under random sampling with replacement; it
may be worthy of note that bootstrapping is equivalent to simple random sampling with replacement.
The second issue of negativity never exists in sampling. However, bias and variance may be worse. The
variance of multinomial sampling equals V(mj) = mπj(1− πj). The solution to mπ(1− π) ≤ V(xj) does
not exist when m > 4V(xj). From Table 4, we understand that the discrete Laplace noise is usually
smaller than multinomial sampling. Nevertheless, post-processed data do not necessarily behave well. If
a population contains many cells of frequency 0 and 1 (i.e., sparse) then heavy post-processing inevitably
follows from the discrete Laplase noise. Random sampling can be preferable because of no need for
post-processing.

Sparsity arises from J ≫ n. Hence the discrete Laplace noise is disadvantageous for large J . Moreover,
adding independent noise to each cell accumulates proportionally to J , which is also the disadvantage of
the discrete Laplace noise. By contrast, not J but m samples are independent in multinomial sampling.
Hence noise accumulation is relaxed under multinomial sampling when J ≫ m. Cluster sampling further
reduces noise accumulation due to the dependence of samples.

In conclusion, quasi-multinomial sampling is theoretically more scalable than known methods to
publish microdata of large J and m under rigorous, not approximate, protection of differential privacy.
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Appendix—Proofs

In the proofs of differential privacy, suppose that one individual of the kth cell moves to the jth cell,
where k ̸= j. The indicies of J cells can be permutated, and thus the following argument fixes (j, k)
without loss of generality. It is worthy of note that nk ≥ 1 since no individual can move when nk = 0.

Proof of Theorem 1

We rewrite the definition (1) of differential privacy under (5) as

P(m⃗; n⃗)

P(m⃗; n⃗′)
=

Γ(nj + γj + 1)

Γ(nj + γj −mj + 1)

Γ(nj + γj −mj + 2)

Γ(nj + γj + 2)

Γ(nk + γk + 1)

Γ(nk + γk −mk + 1)

Γ(nk + γk −mk)

Γ(nk + γk)

=
nj + γj −mj + 1

nj + γj + 1

nk + γk
nk + γk −mk

(20)

≤ exp(ϵ).
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This inequality must hold for all (m⃗, n⃗, n⃗′). Hence we maximize (20) within the support of (m⃗, n⃗, n⃗′).
Regarding (20) as the product of two ratios, the first ratio is maximized to unity when mj = 0 regardless
of nj . The second ratio is maximized when mk = m and nk = 1 since mk ≤ m and nk ≥ 1. We
note that (20) increases as γk decreases. Therefore, the definition of differential privacy (1) reduces to
(1 + minj γj)/(1 + minj γj −m) ≤ exp(ϵ). This inequality is equivalent to (6). □

Proof of Theorem 2

The proof of this theorem is similar to that of Theorem 1; just replace (20) with {(nj + γj)/(nj + 1 +
γj)}mj{(nk + γk)/(nk − 1 + γk)}mk . Then (1) reduces to (1 + 1/minj γj)

m ≤ exp(ϵ), which is equivalent
to (8). □

Proof of Theorem 3

Similarly to the proof of Theorem 1, we can simplify the definition (1) of differential privacy under (9) as

Bmj
(nj + γj ,w)

Bmj
(nj + 1 + γj ,w)

Bmk
(nk + γk,w)

Bmk
(nk − 1 + γk,w)

≤ exp(ϵ). (21)

This condition (21) must hold for all (m⃗, n⃗, n⃗′). The l.h.s. of (21) is regarded as the product of two ratios,
and we evaluate the upper bound of each ratio.

The first ratio of the l.h.s. of (21) can be rewritten for mj ∈ N as

Bmj
(nj + γj ,w)

Bmj (nj + 1 + γj ,w)
=

mj∑
l=1

(
nj + γj

nj + γj + 1

)l (nj + γj + 1)lBmj ,l(w)∑mj

l=1(nj + γj + 1)lBmj ,l(w)
. (22)

The r.h.s. of (22) is the weighted mean of ((nj + γj)/(nj + γj + 1))l, l ∈ [mj ]. All the weights are
nonnegative for w ∈ R+ × R0+

∞. Therefore, the weighted mean is bounded as

0 <

(
nj + γj

nj + γj + 1

)mj

≤
Bmj

(nj + γj ,w)

Bmj (nj + 1 + γj ,w)
≤ nj + γj

nj + γj + 1
< 1

when mj ∈ N since nj + γj > 0. Hence (22) is maximized to unity when mj = 0.
The second ratio of the l.h.s. of (21) is also the weighted mean of ((nk+γk)/(nk−1+γk))

l. Similarly,

1 <
nk + γk

nk − 1 + γk
≤ Bmk

(nk + γk,w)

Bmk
(nk − 1 + γk,w)

≤
(

nk + γk
nk − 1 + γk

)mk

(23)

when mk ∈ N. Because mk ≤ m, the upper bound of (23) is maximized when mk = m. Hence

Bmj
(nj + γj ,w)

Bmj
(nj + 1 + γj ,w)

Bmk
(nk + γk,w)

Bmk
(nk − 1 + γk,w)

≤
(

nk + γk
nk − 1 + γk

)m

,

where the upper bound is maximized when nk + γk is minimized. Consequently, we obtain the result. □

Proof of Theorem 4

Because nk − 1 + γk > 0, the second ration of the l.h.s. of (21) is maximized when mk = m under the
assumption that w ∈ W1. Hence, observing the proof of Theorem 3, the definition (1) of differential
privacy is simplified as

Bm(nk + γk,w)

Bm(nk − 1 + γk,w)
≤ exp(ϵ). (24)

Under the assumption that w ∈ W2, (24) is further reduced to (14). □

11



Proof of Theorem 5

The condition of W requires that Bn+1(λ+ 1,w)/Bn+1(λ,w) ≥ Bn(λ+ 1,w)/Bn(λ,w). We rewrite this
condition as

Bn+1(λ+ 1,w)Bn(λ,w)

Bn+1(λ,w)
−Bn(λ+ 1,w) ≥ 0. (25)

The l.h.s. of (25) is further rewritten as

n∑
k=1

(λ+ 1)k{Bn+1,k(w)
Bn(λ,w)

Bn+1(λ,w)
−Bn,k(w)}+ (λ+ 1)n+1Bn+1,n+1(w)

Bn(λ,w)

Bn+1(λ,w)
. (26)

We note that

n∑
k=1

λk{Bn+1,k(w)
Bn(λ,w)

Bn+1(λ,w)
−Bn,k(w)}+ λn+1Bn+1,n+1(w)

Bn(λ,w)

Bn+1(λ,w)

= Bn+1(λ,w)
Bn(λ,w)

Bn+1(λ,w)
−Bn(λ,w) = 0.

Because λn+1Bn+1,n+1(w) Bn(λ,w)
Bn+1(λ,w) is strictly positive,

∑n
k=1 λ

k{Bn+1,k(w) Bn(λ,w)
Bn+1(λ,w) − Bn,k(w)} is

strictly negative. Then we use the condition of this theorem that

Bn+1,k(w)/Bn,k(w) ≤ Bn+1,k+1(w)/Bn,k+1(w).

It implies that there exists an integer C ∈ [n] such that

{Bn+1,i(w)
Bn(λ,w)

Bn+1(λ,w)
−Bn,i(w)} < 0, i ∈ [C],

and

{Bn+1,i(w)
Bn(λ,w)

Bn+1(λ,w)
−Bn,i(w)} ≥ 0, i ∈ ([n] \ [C]).

For such C, define

T1 :=

C∑
i=1

λi{Bn+1,i(w)
Bn(λ,w)

Bn+1(λ,w)
−Bn,i(w)} < 0

and

T2 :=

n∑
i=C+1

λi{Bn+1,i(w)
Bn(λ,w)

Bn+1(λ,w)
−Bn,i(w)}+ λn+1Bn+1,n+1(w)

Bn(λ,w)

Bn+1(λ,w)
> 0.

Now we rewrite (26) as

C∑
i=1

(λ+ 1)i{Bn+1,i(w)
Bn(λ,w)

Bn+1(λ,w)
−Bn,i(w)}

+

n∑
i=C+1

(λ+ 1)i{Bn+1,i(w)
Bn(λ,w)

Bn+1(λ,w)
−Bn,i(w)}+ (λ+ 1)1+nBn+1,n+1(w)

Bn(λ,w)

Bn+1(λ,w)
.

The first line of this expression is not less than {(λ + 1)/λ}CT1. The second line is not less than
{(λ+1)/λ}C+1T2. By noting that T1 + T2 = 0, (26) is not less than [{(λ+1)/λ}C+1 −{(λ+1)/λ}C ]T2,
which is strictly positive. Consequently, (25) is satisfied. □
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